• Title/Summary/Keyword: Wheel Loading

Search Result 178, Processing Time 0.02 seconds

Operational Validation of the COMS Satellite Ground Control System during the First Three Months of In-Orbit Test Operations (발사 후 3개월간의 궤도 내 시험을 통한 통신해양기상위성 관제시스템의 운용검증)

  • Lee, Byoung-Sun;Kim, In-Jun;Lee, Soo-Jeon;Hwang, Yoo-La;Jung, Won-Chan;Kim, Jae-Hoon;Kim, Hae-Yeon;Lee, Hoon-Hee;Lee, Sang-Cherl;Cho, Young-Min;Kim, Bang-Yeop
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • COMS(Chollian) satellite which was launched on June 26, 2010 has three payloads for Ka-band communications, geostationary ocean color imaging and meteorological imaging. In order to make efficient use of the geostationary satellite, a concept of mission operations has been considered from the beginning of the satellite ground control system development. COMS satellite mission operations are classified by daily, weekly, monthly, and seasonal operations. Daily satellite operations include mission planning, command planning and transmission, telemetry processing and analysis, ranging and orbit determination, ephemeris and event prediction, and wheel off-loading set point parameter calculation. As a weekly operation, North-South station keeping maneuver and East-West station keeping maneuver should be performed on Tuesday and Thursday, respectively. Spacecraft oscillator updating parameter should be calculated and uploaded once a month. Eclipse operations should be performed during a vernal equinox and autumnal equinox season. In this paper, operational validations of the major functions in COMS SGCS are presented for the first three month of in-orbit test operations. All of the major functions have been successfully verified and the COMS SGCS will be used for the mission operations of the COMS satellite for 7 years of mission life time and even more.

Evaluation of Static and Fatigue Performances of Decks Reinforced with GFRP Rebar for Reinfocement Ratio (GFRP 보강근으로 보강된 바닥판의 보강비에 따른 정적 및 피로성능 평가)

  • You, Young-Jun;Park, Young-Hwan;Choi, Ji-Hun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.491-497
    • /
    • 2014
  • The corrosion of steel reinforcement in reinforced concrete bridge decks significantly affects the degradation of the capacity. Due to the advantageous characteristics such as high tensile strength and non-corrosive property, fiber reinforced polymer (FRP) has been gathering much interest from designers and engineers for possible usage as a alternative reinforcement for a steel reinforcing bar. However, its application has not been widespread, because there data for short- and long-term performance data of FRP reinforced concrete members are insufficient. In this paper, seven full-scale decks with dimensions of $4000{\times}3000{\times}240mm$ were prepared and tested to failure in the laboratory. The test parameter was the bottom reinforcement ratio in transverse direction. The decks were subjected to various levels of concentrated cyclic load with a contact area of $577{\times}231mm$ to simulate the vehicle loading of DB-24 truck wheel loads acting on the center span of the deck. It was observed that the glass FRP (GFRP) reinforced deck on a restraint girder is strongly effected to the level of the applied load rather than the bottom reinforcement ratio. The study results showed that the maximum load less than 58% of the maximum static load can be applied to the deck to resist a fatigue load of 2 million cycles. The fatigue life of the GFRP decks from this study showed the lower and higher fatigue performance than that of ordinary steel and CFRP rebar reinforced concrete deck. respectively.

A Preliminary Study for Assessing the Risk of Road Collapse Using Accelerated Pavement Testing (도로함몰 위험도 평가를 위한 실대형 포장가속시험 기초 연구)

  • Park, Hee Mun;Kim, Yeon Tae;Choi, Ji Young;Kim, Ki Hyun
    • International Journal of Highway Engineering
    • /
    • v.18 no.5
    • /
    • pp.57-62
    • /
    • 2016
  • PURPOSES : The objective of this study is to evaluate the effect of size and depth of cavities on the pavement failure using the full-scale accelerated pavement testing. METHODS : A full-scale testbed was constructed by installing the artificial cavities at a depth of 0.3 m and 0.7 m from the pavement surface for accelerated pavement testing. The cavities were made of ice with a dimension of 0.5 m*0.5m*0.3m, and the thickness of asphalt and base layer were 0.2 m and 0.3 m, respectively. The ground penetrating radar and endoscope testing were conducted to determine the shape and location of cavities. The falling weight deflectometer testing was also performed on the cavity and intact sections to estimate the difference of structural capacity between the two sections. A wheel loading of 80 kN was applied on the pavement section with a speed of 10 km/h in accelerated pavement testing. The permanent deformation was measured periodically at a given number of repetitions. The correlation between the depth and size of cavities and pavement failure was investigated using the accelerated pavement testing results. RESULTS : It is found from FWD testing that the center deflection of cavity section is 10% greater than that of the intact section, indicating the 25% reduction of modulus in subbase layer due to the occurrence of the cavity. The measured permanent deformation of the intact section is approximately 10 mm at 90,000 load repetitions. However, for a cavity section of 0.7 m depth, a permanent deformation of 30 mm was measured at 90,000 load repetitions, which is three times greater than that of the intact section. At cavity section of 0.3 m, the permanent deformation reached up to approximately 90 mm and an elliptical hole occurred at pavement surface after testing. CONCLUSIONS : This study is aimed at determining the pavement failure mechanism due to the occurrence of cavities under the pavement using accelerated pavement testing. In the future, the accelerated pavement testing will be conducted at a pavement section with different depths and sizes of cavities. Test results will be utilized to establish the criteria of risk in road collapse based on the various conditions.

The Response Prediction of Flexible Pavements Considering Nonlinear Pavement Foundation Behavior (비선형 포장 하부 거동을 고려한 연성 포장의 해석)

  • Kim, Min-Kwan
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.165-175
    • /
    • 2009
  • With the current move towards adopting mechanistic-empirical concepts in the design of pavement structures, state-of-the-art mechanistic analysis methodologies are needed to determine accurate pavement responses, such as stress, strain, and deformation. Previous laboratory studies of pavement foundation geomaterials, i.e., unbound granular materials used in base/subbase layers and fine-grained soils of a prepared subgrade, have shown that the resilient responses followed by nonlinear, stress-dependent behavior under repeated wheel loading. This nonlinear behavior is commonly characterized by stress-dependent resilient modulus material models that need to be incorporated into finite element (FE) based mechanistic pavement analysis methods to predict more realistically predict pavement responses for a mechanistic pavement analysis. Developed user material subroutine using aforementioned resilient model with nonlinear solution technique and convergence scheme with proven performance were successfully employed in general-purpose FE program, ABAQUS. This numerical analysis was investigated in predicted critical responses and domain selection with specific mesh generation was implemented to evaluate better prediction of pavement responses. Results obtained from both axisymmetric and three-dimensional (3D) nonlinear FE analyses were compared and remarkable findings were described for nonlinear FE analysis. The UMAT subroutine performance was also validated with the instrumented full scale pavement test section study results from the Federal Aviation Administration's National Airport Pavement Test Facility (FAA's NAPTF).

  • PDF

Pollutant Loading and Changes of the Self - Purification Capacity with Season in Gokneung Stream Ecosystem (곡릉천 생태계의 오염부하량과 계절에 따른 자정능의 변화)

  • 이선경;심규철;김재영;김준민;장남기
    • The Korean Journal of Ecology
    • /
    • v.17 no.3
    • /
    • pp.355-366
    • /
    • 1994
  • The purpose of this study was to investigate the changes of water quality and the patterns of self-purification with season in Gokneung stream. The vegetation in the ecosystem around Gokneung stream was dominated by Quercus species. In the physicochemical analysis based on the contents of DO, BOD, conductivity and total phosphorus, the upstream seemed to have been polluted, but the downstream was self-purified. In biological investigation by bentic macroinvertebrates, the result was similar to that in the physicochemical analysis. The self-purification constant based on BOD of the upstream, 1.013, was the highest. In the self-purification constants with month, that of September was 0.995 and that of January was 0.272. These results indicated that the self purification capacities of spring and autumn were larger than those of winter and summer in Gokneung stream.

  • PDF

An Analysis of Soil Pressure Gauge Result from KHC Test Road (시험도로 토압계 계측결과 분석)

  • In Byeong-Eock;Kim Ji-Won;Kim Kyong-Ha;Lee Kwang-Ho
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.129-141
    • /
    • 2006
  • The vertical soil pressure developed in the granular layer of asphalt pavement system is influenced by various factors, including the wheel load magnitude, the loading speed, and asphalt pavement temperature. This research observed the distribution of vertical soil pressure in pavement supporting layer by investigating measured data from soil pressure gage in the KHC Test Road. The existing specification of subbase and subgrade compaction was also evaluated with measured vertical pressure. The finite element analysis was conducted to verify the accuracy of results with measured data because it can maximize research capacity without significant field test. The test data was collected from A5, A7, A14, and A15 test sections at August, September, and November 2004 and August 2005. Those test sections and test data were selected because they had best quality. The size of influence area was evaluated and the vertical pressure variation was investigated with respect to load level, load speed, and pavement temperature. The lower speed, higher load level, and higher pavement temperature increased the vertical pressure and reduced the area of influence. The finite element result showed the similar trend of vertical pressure variation in comparison with measured data. The specification of compaction quality for subbase and subgrade is higher than the level of vertical pressure measured with truck load so that it should be lurker investigated.

  • PDF

Evaluation of the Temperature Drop Effect and the Rutting Resistance of Moisture Retaining-Porous Asphalt Pavement Using Accelerated Pavement Testing (포장가속시험을 이용한 보수형 배수성 포장의 온도저감 효과 및 소성변형 저항특성 연구)

  • Kwak, Byoung-Seok;Suh, Young-Chan;Song, Chul-Young;Kim, Ju-Won
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.97-109
    • /
    • 2009
  • One of the main causes of asphalt rutting is high temperature of the pavement. Nevertheless, there has been few research on lowering the pavement temperature for reducing rutting. This study investigated the performance characteristics of moisture-retaining porous asphalt pavement, which is known to have a temperature reducing effect. The purpose of this study is to quantify the temperature reducing effect of moisture-retaining porous asphalt pavement and its effect of reducing rutting through Accelerated Pavement Testing(APT). Additionally, the possibility of reducing the thickness of the pavement in comparison to general dense grade pavement by analyzing structural layer coefficient of moisture retaining pavement. A total of three test sections consisting of two moisture-retaining porous asphalt pavement sections and one general dense-grade porous asphalt pavement section were constructed for this study. Heating and spraying of water were carried out in a regular cycle. The loading condition was 8.2 ton of wheel load, the tire pressure of $7.03kgf/cm^2$, and the contact area of $610cm^2$. The result of this experiment revealed that the temperature reducing effect of the pavement was about $6.6{\sim}7.9^{\circ}C$(average of $7.4^{\circ}C$) for the middle layer and $7.9{\sim}9.8^{\circ}C$(average of $8.8^{\circ}C$) for surface course, resulting in a rutting reduction of 26% at the pavement surface. Additionally, the structural layer coefficient of moisture retaining pavement measured from a laboratory test was 0.173, about 1.2 times that of general dense grade pavement. The general dense-grade porous asphalt pavement test section exhibited rutting at all layers of surface course, middle layer, and base layer, while the test sections of moisture-retaining porous asphalt pavement manifested rutting mostly at surface course only.

  • PDF

Overview of Utilization of Four-wheel Tractor in Korea(I) -Ownership and Annual Use by Different Farm Groups- (농용(農用)트랙터 이용(利用)에 관(關)한 조사연구(調査硏究)(I) -경영형태별(經營形態別) 농작업이용실태분석(農作業利用實態分析)-)

  • Park, Ho Seok;Kim, Kyong Su;Lee, Yong Kook;Han, Sung Kum
    • Journal of Biosystems Engineering
    • /
    • v.6 no.2
    • /
    • pp.20-32
    • /
    • 1982
  • This survey was conducted to investigate the present status of farm tractor utilization for obtaining a basic reference to the establishment of the government's agricultural mechanization strategies. Thirty two counties from the eight provinces except Jeju were covered in this study. From these selected areas, 433 sample farms having farm tractor were taken to obtain the general informations by the enquete, and 93 sample farms among them to investigate the status of daily tractor use in the year of 1980. The analyzed results are summarized as follows: 1. Farm tractors owned by the rice-oriented farms holds 71.5 percent of the total number of tractors the livestock-oriented farms 17.0 percent, and the orchard-oriented farms 7.0 percent. Among the farm tractors 64.3 percent was a large size (46ps) and 35.7 percent a small size(19~23ps). 2. Most of the tractors surveyed were equipped with the essential attachments such as plow and rotavator. About 18 percent of the tractor owners had no trailer, which seemed too high considering the large percentage of tractor use for transportation. The availability of other attachments was very low except a grader on the rice-oriented farms and a hay harvester and a front loader on the livestock-oriented farms. 3. The average size of farm was 3.9 hectare for the rice-oriented farms, 13.9 hectare for the livestock-oriented farms and 7.4 hectare for the orchard-oriented farms. It was obious that the average farm size of was too small compared to the theoretical machine capacity of the tractors. 4. About 70 percent of the tractor operators were in the age of twenties and thirties. About 90 percent of them had an educational level of middle school graduate or above even though their technical level was very low. 5. Any particular problem in tractor use was not found in this survey. From the farmer's preference for purchasing a new tractor, however, it is estimated the demand on a 20-30ps tractor will be more increased. 6. The average annual use of tractor was of about 100 days or 400 hours. It appeared that the rice-oriented farms used most with 412.4 hours per year, and followed by the livestock-oriented farms with 403.6 hours, the orchard oriented farms with 377.7 hours. 7. Among the total hours of tractor use, 47.3 percent was for transportation, and 41.6 percent was for plowing and rotary tillage. The largest portion of the annual tractor use was taken by transportation on the livestock-oriented farms, by land preperation on the rice-oriented farms, and by loading and chemical spraying on the orchard-oriented farms. 8. The hours of tractor use had a peak in May. The hours of use for own farm was remarkably different among the different farm oriented, but there was no considerable difference between the too different sizes of tractor. 9. The hours of tractor use decreased as the age of the operator or the educational level increased. The reason might be that the operators who had a high educational level or were older had a tendency of disliking custom works. 10. The average custom use of tractor was 171.3 hours per year, and the ratio of custom work was 63.7 percent on the rice-oriented farms, 31.7 percent on the livestock-oriented farms and 22.4 percent on the orchard-oriented farms. Among the custom works, the most popular one was the grader leveling. 11. The charge on custom work was about 40,000 Won per hectare for plowing and rotary tillage, and it was the most expensive in the southeastern region, and next followed by the southwestern region. 12. The average plowing capacity of the small tractor was 7.8 hours per hectare in the paddy field, and that of the large tractors was 4.3 hours per hectare. The average rotary-tilling capacities of the small and the large tractors were 6.5 and 4.3 hours per hectare, in the paddy field respectively.

  • PDF