• Title/Summary/Keyword: Wheel Life

Search Result 200, Processing Time 0.027 seconds

A Study on the Contact Fatigue Life Evaluation for Railway Wheels Considering Residual Stress Variation (잔류응력 변화를 고려한 철도차량 차륜의 접촉피로 수명평가)

  • Seo, Jung-Won;Goo, Byeong-Choon;Choi, Jae-Boong;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1391-1398
    • /
    • 2004
  • Railway wheels and axles belong to the most critical components in railway vehicles. The service conditions of railway vehicles became more severe in recent years due to the increase of speed. Therefore, a more precise evaluation of wheelset life and safety has been requested. Wheel/rail contact fatigue and thermal cracks due to braking heat are two main mechanisms of the railway wheel failure. In this paper, an evaluation procedure for the contact fatigue life of railway wheel is proposed. One of the main sources of the contact zone failure is the residual stress. The residual stress on wheel is formed during the manufacturing process which includes a heat treatment, and then is changed by contact stress developed by wheel/rail contact and thermal stress induced by braking. Also, the cyclic stress history for fatigue analysis is determined by applying finite elements analysis for the moving contact load. The objective of this paper is to estimate fatigue life by considering residual stress due to heat treatment, braking and repeated contact load, respectively.

Effect of Metal Removal and Traction Force on Contact Fatigue Life (견인력과 접촉표면 제거가 접촉피로수명에 미치는 영향)

  • Seo Jung-Won;Hur Hun-Mu;Choi Jae-Boong;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1384-1391
    • /
    • 2005
  • Damage often occurs on the surface of railway wheels due to wheel-rail contact fatigue. It should be removed before reaching wheel failure, because wheel failure can cause derailment with loss of life and property. The increase or decrease of the contact fatigue lift by the metal removal of the contact surface were investigated by many researchers, but they have not considered initial residual stress and traction force. The railway wheel has the initial residual stress formed during the manufacturing process, and the residual stress is changed by thermal stress induced by braking. The traction force and residual stress are operated on wheels of locomotive and electric motor vehicle. In this study, the effect of metal removal depth on the contact fatigue life for a railway wheel has been evaluated by applying lolling contact fatigue test. The effect of the traction force and metal removal on the contact fatigue life has been estimated by finite element analysis. It has been found that the initial residual stress determines the amount of metal removal depth if the traction coefficient is less than 0.15. If the traction coefficient is greater than 0.2, however, the amount of metal removal depth is independent on the intial residual stress.

Variation of Grinding Force and Wheel Life in Surface Grinding (평면연삭에서 연삭력 변화와 숫돌수명)

  • Choi, S. S.;Koo, Y.;Kwak, J. S.;Ha, M. K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1109-1112
    • /
    • 2001
  • In the grinding process, the edge of shape is very important to evaluate the surface roughness and the precision of dimension. To keep precision of product, parameters with respect to the amount of wheel wear have to limit by grinding condition. In this paper, we measured variation of grinding force to seek the grinding characteristics by the amount of wheel wear in surface grinding. Also, we find out that how these condition give influence to wheel life.

  • PDF

A Study on the influence of the rate of thermo-mechanical loads on the fatigue of turbine wheel (열-기계하중 적용 속도 변화에 따른 터빈휠의 수명 변화 연구)

  • Park, Hwun;Kim, Hyunjae;Kim, Jeesoo;Shin, Dongick;Ryu, Shiyang;Shin, Jongsub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.245-247
    • /
    • 2017
  • A turbine wheel undergoes high heat flux and centrifugal force when a gas turbine starts. The temperature and stress of the turbine wheel increase rapidly, and the time point and rate of them may not coincident. The difference of heating and rotating rates influences the life of turbine wheel. We conducted thermo-mechanical fatigue analysis with finite element methods to study the influence. The low acceleration and deceleration of the wheel extends the life. If the turbine wheel decelerate faster than cooling, the life increases.

  • PDF

Selection of Internal Clearance for Automotive Wheel Bearings Considering an Assembling Procedure (조립과정을 고려한 차륜용 베어링의 내부틈새 선정)

  • 현준수;안태길;김성근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.51-57
    • /
    • 2000
  • An automotive wheel bearing is one of the most important components to guarantee the service life of a passenger car. The endurance lift of a bearing is affected by many parameters such as material properties, heat treatment, lubrication conditions, temperature, loading conditions, geometry, internal clearance and so on. Under the same geometry and loading conditions, the internal clearance is the most effective parameters on the endurance lift of a bearing. Generally, bearings have the longest lift with a little negative internal clearance. But it is very difficult to measure and modify the internal clearance after a wheel bearing is assembled. In this paper, we analyze the effect of an assembling procedure on the clearance of wheel bearings and suggest a method to determine optimal clearance for automotive wheel bearings by selecting initial bearing clearance.

  • PDF

Durability Study of Subway Brake Disc and Wheel-type Brake (지하철의 브레이크 디스크와 차륜방식브레이크의 내구성 연구)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.22-28
    • /
    • 2019
  • In this study, as part of the subway braking system, the structural analysis was performed with the fatigue analysis by comparing subway brake disc and wheel-type brake. When structural analysis was performed, it was possible to verify that the wheel-type brake were higher than the brake discs in case of total deformation. As the same loading conditions were given to the subway brake disc and wheel-type brake, wheel-type brakes was shown to have more deformation than brake disk but lower damage than the subway brake disc. Comparing with each fatigue loading condition, the maximum fatigue life for 'Sample history' is found to be about 60 times longer than for 'SAE bracket history'.

A Study on the Determination of Grinding Wheel Life and Dressing Time Using AE Sensor (AE센서를 이용한 숫돌의 수명판정 및 드레싱시간의 결정에 관한 연구)

  • Jun, Kil-Jae;Lee, Sang-Tae;Kim, Nam-Kyung;Jung, Yoon-Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.95-102
    • /
    • 2002
  • The grinding operation is an important machining process for machining of final surface. However, grinding process has inevitable troubles such as loading and glazing for grinding wheel. It is, therefore, an essential research theme to determine the wheel life and the dressing time for efficient grinding. In this study, AE signals (AEavg) generated in the grinding operation were measured and the dressing time was determined from the analysis of the AEavg value. To verify the propriety of the obtained result, the AE signals measured on the grinding and the dressing operation were compared with the grinding force signals and the dressing force which were measured at same time. From the obtained result, it was confirmed that the determination of the wheel life and the dressing tilde by the AE measurement technique proposed in this study can be practically used.

Anti-wear performance and life evaluation of wheel bearing type greases

  • Kim Jung-Young;Chung Keun-Wo;Kim Young-Wun;Jo Won-Oh
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.111-116
    • /
    • 2004
  • Li-complex and urea type greases (each 10 species) which were furnished by Chang-Am LS, analyzed anti-wear performance into fretting wear tester & four-bail wear tester. from the results of fretting wear test, the wear volume of Li-complex greases are $4.6\~8.9mg\;and\;8.3\~14.4mg$ with the test of urea greases. The anti-wear performance for 4-ball wear test of greases produced results around 0.5mm at the value of WSD. The grease life performance were evaluated by SKF-ROF Grease Tester and wheel bearing life tester. From the results of SKF-ROF tester, the life performance evaluated by whole working time produced results $50\~300hr$ with the Li-complex greases and 100-1000hr with the urea greases. That is to say, in spite of severe condition at the higher of $10^{\circ}C$ reaction temp, the life performance with Urea type greases are much superior to Li-complex type greases. Prior to wheel bearing life tester, the grease selected performance evaluation(=anti-wear test) are tested by wheel bearing tester. In this results, we can confirm results those are similar with SKF-ROF tester. In this study, we can draw two major conclusions, one is that Li-complex greases are superior to urea greases with anti-wear properties and the other is that urea greases are much superior to Li-complex greases with life performance.

  • PDF

Experimental study on rolling contact fatigue of railway wheel (철도차량 차륜의 구름접촉피로의 실험적 연구)

  • Seo Jung Won;Hu Hun Mu;Lee Dong Hyeong;Chung Heung Chai
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.714-719
    • /
    • 2004
  • Railway wheels and axles belong to the most critical components in railway vehicles. The service conditions of railway vehicles became more severe in recent years due to the increase of speed. Therefore, a more precise evaluation of wheel/set life and safety has been requested. One of the major reasons of railway wheel damage is a contact zone failure by wheel/rail contact. In this paper, we conducted a rolling contact fatigue test for wheels using a specimen of wheel/rail. the behavior of hardeness and residual stress below the contact surface of the test pieces in the fatigue process were analyzed. Finally, the relation between fatigue life and contact pressure was obtained.

  • PDF

Study of a Forging Process for the Application of Boron Steel for Automotive Wheel Nut Material (차량용 Wheel Nut 소재의 보론강적용을 위한 단조공정에 관한 연구)

  • Lee, Kwon-Soo;Ahn, Yong-Sik
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.41-47
    • /
    • 2017
  • Boron steel (51B20) was cold forged using by new designed dies to apply for automotive aluminum wheel nut. The formability and mechanical properties of boron steel were compared with carbon steel(S45C) which has been used up to date for the wheel nut material. The formability was investigated on the dies designed with various types of punch nose using by FEM. The metal flow and compressive stress on the dies during cold forging were investigated and compared each other. The forging process with a new designed die showed the improved metal flow with a reduced forging load which resulted in the significant increase of the die life. It was recommended that the carbon steel for automotive wheel nut material could be substituted by the boron steel.