• Title/Summary/Keyword: Wheel Drive

Search Result 278, Processing Time 0.021 seconds

Position, Orientation, and Velocity Feedback Control Algorithms for Differential-Drive Bobile Robot (차동 구동형 이동 로보트의 위치, 방향 및 속도 궤환 제어 알고리즘)

  • 정용욱;박종국
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.11
    • /
    • pp.63-72
    • /
    • 1997
  • The design and implementation of a drive wheel position, orientation, and velocity feedback control algorithm for a differential-drive mobile robot is described here. A new concept, the most significant error, is introduced as the control design objective. Drive wheel position, orientation, and velocity feedback control directly minimize the most siginificant error by coordinating the motion of the two drive wheels. The drive wheel position, orientation, and velocity feedback control algorithm is analyzed and experiments are conducted to evaluate its performance. The experimental results are shown that drive wheel position, orientation and velocity feedback control algorithm yields substantially smaller position and orientation errors than those of conventional methods.

  • PDF

Analysis of Acceleration Performance Improvement for Electric Vehicle Using 2-Speed Transmission (2단변속기를 사용한 전기차의 가속성능 향상 분석)

  • Kim, Jeong-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.84-90
    • /
    • 2022
  • In this study, the acceleration performance improvement was analyzed for a 2-speed transmission applied EV. An EV simulator was developed to analyze the EV acceleration performance. The EV simulator includes a load transfer model between the front and rear. Thus, the EV simulator can analyze the acceleration performance difference between the front-and rear-wheel drive EVs. From the simulation results, it is deduced that the acceleration performance can be improved by 7.96% for the front-wheel drive EV and 16.10% for the rear-wheel drive EV. The 2-speed transmission can improve the acceleration performance without decreasing its maximum velocity. Moreover, the 2-speed transmission can improve the acceleration performance of the rear wheel drive more than that of the front-wheel drive EV.

Slip Detection and Control Algorithm to Improve Path Tracking Performance of Four-Wheel Independently Actuated Farming Platform (4륜 독립구동형 농업용 플랫폼의 주행 궤적 추종 성능 향상을 위한 휠 슬립 검출 및 보상제어 알고리즘 연구)

  • Kim, Bongsang;Cho, Sungwoo;Moon, Heechang
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.3
    • /
    • pp.221-232
    • /
    • 2020
  • In a four-wheel independent drive platform, four wheels and motors are connected directly, and the rotation of the motors generates the power of the platform. It uses a skid steering system that steers based on the difference in rotational power between wheel motors. The platform can control the speed of each wheel individually and has excellent mobility on dirt roads. However, the difficulty of the straight-running is caused due to torque distribution variation in each wheel's motor, and the direction of rotation of the wheel, and moving direction of the platform, and the difference of the platform's target direction. This paper describes an algorithm to detect the slip generated on each wheel when a four-wheel independent drive platform is traveling in a harsh environment. When the slip is detected, a compensation control algorithm is activated to compensate the torque of the motor mounted on the platform to improve the trajectory tracking performance of the platform. The four-wheel independent drive platform developed for this study verified the algorithm. The wheel slip detection and the compensation control algorithm of the platform are expected to improve the stability of trajectory tracking.

Analysis on Climbing Capability of Wheel Drive Robotic Mechanisms (바퀴구동형 로봇 메커니즘의 등반능력 해석)

  • Kim, Byoung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.329-334
    • /
    • 2008
  • It is well-known that a kind of wheel drive mechanism is usefully employed in various service robots. One of the essential requirements for such robots is regarded as the capability of climbing that enables them to run on an inclined road smoothly. So, this paper considers the capability of climbing in a wheel drive robotic mechanism and proposes a necessary discriminating condition to determine the specification of a driving actuator which will be employed. Consequently, it is expected that the proposed discriminating condition can be applied to wheel drive robotic mechanisms in the design aspect.

Development of Power Distribution Algorithm for Driving Efficiency Optimization of Independently Driven Vehicle (독립구동 인휠 전기자동차의 주행 효율 최적화를 위한 구동력 분배 알고리즘)

  • Park, J.H.;Song, H.W.;Jeong, H.U.;Park, C.H.;Hwang, S.H.
    • Journal of Drive and Control
    • /
    • v.11 no.2
    • /
    • pp.16-21
    • /
    • 2014
  • The purpose of this paper is to construct a control algorithm for improving the driving efficiency of 4-wheel-drive in-wheel electric vehicles. The main parts of the vehicle were modeled and the input-output relations of signals were summarized using MATLAB/Simulink. A performance simulator for 4-wheel-drive in-wheel electric vehicles was developed based on the co-simulation environment with a commercial dynamic behavior analysis program called Carsim. Moreover, for improving the driving efficiency of vehicles, a torque distribution algorithm, which distributes the torque to the front and rear wheels, was included in the performance simulator. The effectiveness of the torque distribution algorithm was validated by the SOC simulation using the FTP-75 driving cycle.

Tractive Performance Comparison Between Wheel-Drive Tractors and A Rubber Belt Crawler Tractor

  • Nikoli, I.R.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1196-1201
    • /
    • 1993
  • Test of Caterpillar Challenger 65 tractor which has rubber tracks, and articulated four wheel drive tractor with dual wheels and a mechanical front wheel drive tractor were conducted on an unplowed and plouwed wheat stubble field. The following parameters were analyzed : tractive efficiency (ηv), net tractive coefficient ($\phi$n), slip ($\sigma$) , drawbar pull(Fv), drawbar power (Pv) and forward velocity(v). The maximum net tractive coefficient was established at the tractive efficiency of 0.60 on the unplowed wheat stubble field : for the Challenger 65 tractor 0.855 ; 4WD 0.624 and MFWD 0.534 and on the plowed wheat stubble field with the tractive efficiency of 0.40 for the Challenger 65 tractor 0.82 : 4WD 0.57 and for tractor MFWD 0.48.

  • PDF

Design of Planetary Gear Drive Unit for Drive Conversion of Transfer case (Transfer case의 구동변환을 위한 유성기어장치 구동부 설계)

  • Youm, Kwang-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.2
    • /
    • pp.21-26
    • /
    • 2022
  • Since the four-wheel drive transmits the driving force to all four wheels, the traction with the road surface increases, thereby increasing the driving force. However, it has the disadvantage of lowering fuel efficiency. Therefore, four-wheel drive is commonly used as a method of converting to optional four-wheel drive when necessary while driving in two-wheel drive. This selective four-wheel drive converts the driving force by mechanically changing the electric signal sent by the driver in the transfer case. In this study, in order to mechanically change the electrical signal, a reducer is applied to the motor to increase the torque to perform the function. Therefore, in this study, a reduction mechanism applicable to the motor inside the transfer case applied to convert the drive is derived, and the reduction ratio applying the planetary gear type is optimized accordingly. And based on the derived reduction ratio, two sets of planetary gears using a ring gear in common were applied to develop a planetary gear tooth type in which the input shaft and output shaft are decelerated in the same phase. Optimization design was carried out.

The Study of the Electromagnetic Robot with a Four-wheel Drive and Applied I-PID System

  • Jeong, Jae-Hoon;Lee, Dong-Heon;Kim, Min;Park, Won-Hyun;Byun, Gi-Sig;Oh, Sei-Woong
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1634-1640
    • /
    • 2017
  • The purpose of this study is based on the electromagnet robot with a four-wheel drive which can climb up and down on structures of iron wall instead of human workers. Many of studies strive to develop wall riding-robots in terms of absorption system. However, the system needs additional devices too much to work out as well as electromagnetic wheel system also has much expense to make it. In this regard, this study makes efforts to find the way how to keep steady distance between wheel and wall while using general electromagnet to reduce motor load and to move robot so easily.

A Convergence Study through Durability Analysis due to the Shaft Length of Automotive Constant Velocity Joint (자동차 등속 조인트 샤프트 길이에 따른 내구성 해석을 통한 융합연구)

  • Choi, Gye-Gwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.8
    • /
    • pp.179-184
    • /
    • 2018
  • The driving methods of car are front wheel drive, rear wheel drive and four wheel drive. At driving methods, constant velocity joint is the most important part at carrying out two functions for converting to the direction which the driver wants and transferring the power to wheels. At driving on the road, the impact can be applied to the parts transmitting power according to the state of road surface. In this study, each models of three constant velocity joints whose shaft length are different respectively were modelled with CATIA and the structural and fatigue analyses were carried out by using ANSYS. This study result is thought to be the useful material at designing the constant velocity joint with the durability against impact. And it is possible to be grafted onto the convergence technique at the design of constant velocity joint and show the esthetic sense.

A Study on the Acceleration Durability Test of In-Wheel Drive Gearbox for Military Special Vehicles (군 특수차량용 인휠 드라이브 기어박스의 가속 내구성시험에 관한 연구)

  • Lee, Y.B.;Lee, G.C.;Lee, J.J.;Lim, S.Y.;Kim, W.J.;Kim, K.M.
    • Journal of Drive and Control
    • /
    • v.19 no.3
    • /
    • pp.32-38
    • /
    • 2022
  • The in-wheel drive gearbox for military special vehicles converts the high-speed & low-torque output generated by the electric servomotor, into low-speed & high-torque mechanical power. As the vehicle is remotely maneuvered in mountainous terrain, wet fields, rough terrain, etc., the gearbox must generate a maximum input speed exceeding 5,000 rpm, a maximum torque of 245 Nm, and MTBF of 9,600 km. The purpose of this study was to analyze the failure mode of the gearbox, to ensure the durability of the in-wheel drive gearbox. Also, the field load test data of the vehicle was analyzed, the acceleration durability test standards were established, the acceleration durability test was conducted, and the durability test results were analyzed as well.