• 제목/요약/키워드: Wheel Design

검색결과 1,001건 처리시간 0.03초

수도작용 자주식 붐방제기의 작물손상을 고려한 차륜설계 및 조향형식별 차륜궤적 -작물손상의 시뮬레이션 (A Study on Wheel Design for a Self-Propelled Boom Sprayer considering the Rice Plant Damage and Wheel Track-Plant Damage Simulation of Various Steering Vehicles)

  • 정창주;김형조;조성인;최영수;최중섭
    • Journal of Biosystems Engineering
    • /
    • 제21권1호
    • /
    • pp.34-43
    • /
    • 1996
  • The present pesticide application technology widely used with a power sprayer in Korea is assessed as the problem awaiting solution in the point of view of its ineffectiveness, inefficiency, and environmental contamination. As one approach to get rid of these problems, the boom spraying with ultra-low volume and precision application technology has been recommended. The study was undertaken to investigate plants damages incurred by the self-propelled boom-sprayer vehicle, to develop the design criteria of vehicle wheel, and to compare plant damages caused by the front wheel steering vehicle, the 4-wheel drive vehicle and the articulated vehicle, by the computer simulation. The experiment showed that the amount of damaged plants incurred by the self-propelled boom sprayer were about 0.29% in average in the field size of 100m$\times$50m(0.5ha), about 60~80% of which recovering while growing. The recommandable wheel size was analyzed to be 70~100cm in diameter, 8~15cm in width from the vehicle-plant-soil relationship. The simulation on damaged plants anticipated to be incurred by various steering vehicles showed that the smaller the turning radius, the lesser the damaged plants within its range of 3~5m. Average plant damage rate by the front wheel steering vehicle, the 4-wheel drive vehicle and articulated vehicle was relatively assessed to be 2 : 1.8 : 1.

  • PDF

차량의 모델링과 엔진마운트 최적설계값의 적용 (The Modelling of vehicle and Applying the Optimal Design Values of Engine Rubber Mounts)

  • 박철희;오진우
    • 한국자동차공학회논문집
    • /
    • 제6권2호
    • /
    • pp.129-143
    • /
    • 1998
  • The vibrations of steering wheel are required to be reduced for convenient ride quality and good controllability. This phenomenon, vibration of steering wheel, is occured by interaction with suspension system, steering system, vehicle body, engine/transmission and tire complicately. But reviewing the current research activities, most researches are performed for the vibration analysis of steering wheel with a simple model, and mot easy to be applied to the variation of each component element connected with steering system as well as that of the steering system. In this study, suspension system and steering system are modelled by the T.L.H. coordinate system which is usually used by a passenger car maker. Also, rigid body motions of engine and elastic motions of vehicle body in the previous study are considered. Derive the equation of motion in 29 d.o.f. and the vibration of steering wheel is analyzed numerically and verify the midelling of steering system by comparison with test results for real car. And then, the optimal design values of the engine mount system obtained from the previous study are applied to the verified steering system model and investigate the effects of various engine mount design values on the vibration of steering wheel.

  • PDF

비공기압 방식 소형 산업용 바퀴의 설계를 위한 수치해석과 진동실험에 관한 연구 (A study on design of non-pneumatic small industrial wheel using FEM and vibration tests)

  • 홍필기;손창우;서태일
    • Design & Manufacturing
    • /
    • 제12권3호
    • /
    • pp.48-54
    • /
    • 2018
  • This paper presents a numerical study for the development of a low-noise low-vibration industrial wheel for non-pneumatic wheel to significantly reduce vibration and noise. For this, design, injection molding and performance testing were performed. Various geometric shapes and materials were taken into account. For numerical analysis, ANSYS, LS-Dyna, and ABAQUS were used to predict the behavior of the wheel under different loadings based on various design changes. Based on this, 4 prototypes were fabricated by changing the design of wheels and molds, and various vibration and noise tests were carried out. A vibration tester was developed and tested to perform the vibration noise test considering durability. A prototype and test of the final wheel was performed. In the case of the vibration test, the vibration levels were 81.16dB and 80.66dB, which were below the target 90dB. Noise levels were 53.20 dB and 52.55 dB below the target 65dB. In the case of the impact resistance test, it was confirmed that there was no change in appearance after impact. The product weight was measured to be 174g compared to the target of 190g.

복지형 NEV용 외전형 인-휠 SRM 설계 (Design of Outer Rotor Type In-Wheel SRM for Welfare Neighborhood Electric Vehicle)

  • 정광일;이동희;안진우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 추계학술대회
    • /
    • pp.323-324
    • /
    • 2010
  • In this paper, outer rotor type of in-wheel switched reluctance motor(SRM) has been design and analyzed for Welfare Neighborhood Electric Vehicle(WNEV). Designed outer rotor type of in-wheel SRM is set to 4-wheel of WNEV. the motor is 6/8 and outer rotor type. and the driving load and motor characteristics are determined and designed.

  • PDF

래칫 휠의 자동설계와 유한요소해석을 이용한 검증에 관한 연구 (A Study on the Verification Using Finite Element Analysis and Automatic Design of Ratchet Wheel)

  • 김민주;이승수;전언찬
    • 한국공작기계학회논문집
    • /
    • 제11권3호
    • /
    • pp.45-50
    • /
    • 2002
  • This study is an investigation far the Am optimum design using FEA. We write out program which express ADS perfectly and reduce the required time far correcting of model to the minion in solution md manufacture result. We complete algorithm which can plan optimum forming of model by feedback error information in CAE. Then we contract model by feedbback date obtaining in solution process, repeat course following stress solution again iud do modeling rachet wheel for optimum forming. That is our aim. In cachet wheel, greatest equivalence strss originates in key groove comer and KS standard is proved the design far security.

설계민감도 해석을 이용한 승용차의 스티어링 휠 아이들 진동 개선 (Improvement of Steering-Wheel Idle Vibration in a Passenger Car using Design Sensitivity Analysis)

  • 이두호;김명업
    • 한국자동차공학회논문집
    • /
    • 제8권2호
    • /
    • pp.129-137
    • /
    • 2000
  • In the prototype stage of a car developing program, the efficiency of trouble shooting is an important factor to be considered. Structural modifications by the design sensitivity analysis are applied to a steering wheel system for improving the idle vibration of the prototype passenger car. For the design sensitivity analysis, the experimental modal analysis for the steering system attached to a body-in-white is fulfilled and the modal parameters extracted from the experimental data are used to predict the effect of structural modification, The design sensitivity results rank the locations to be reinforced in terms of frequency variation. The modification of steering system according to the sensitivity analysis results shifted the resonant frequency of the system effectively. In addition, the idle test of the car after the structural modifications f steering system shows that the proposed method can reduce vibration of the steering wheel efficiently.

  • PDF

승용차용 Wheel Bearing Hub Unit 설계를 위한 주행 하중조건의 실험적 연구 (Experimental Study of Driving Load Conditions for the Wheel Bearing Hub Unit of Passenger Car)

  • 김기훈;유영면;임종순
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.166-173
    • /
    • 2002
  • The wheel bearing hub unit is developed type of wheel bearing unified with the hub parts. It has advantage of reducing the weight and the number of components. And, it also improves uniformity of manufacturing quality, In order to design the wheel bearing hub units, many techniques are used such as load analysis, structure analysis and bearing characteristics analysis and so forth. These techniques need highly accurate load conditions founded on service conditions. In this study, to design the wheel bearing hub units used widespread in passenger cars, the service load was measured through driving tests on the public roads and in the special events. The public roads are classified into highway, intercity road, rural road, urban road, and unpaved road so as to know what the characteristics of the road loads are. The results of the tests showed that the wheel force was relative to the lateral acceleration, and also could be calculated from the lateral acceleration. The lateral acceleration was measured from 0.0G to 0.6G in general driving on the public roads, with different distributions in each road type. In special events, the maximum lateral acceleration was measured from 0.8G to 1.3G.

휠 베어링용 밀봉 시일 설계를 위한 시일 립의 밀착력 예측 (Prediction of the Reaction Force for Seal Lip Design with Wheel Bearing Unit)

  • 김기훈;유영면;임종순;이상훈
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.165-172
    • /
    • 2001
  • Wheel bearing units were almost exclusively used for car front wheel, where the two ball rows are directly side by side with integrated rubber seal. The seal is of important for wheel bearing units due to the adverse environmental conditions with mud and splash water. The seal of wheel bearing units was designed to have geometry with multi lips, which elastic lip contacts and deforms with bearing. The equation of reaction force for deformed lip as cantilever beam was previously used for seal lip design. But it's result was not useful because deflection of the beam differs from lip's. In this study, deformed shape of the lip was assumed to and order function which is more similar to lip deformation and made the equation for reaction force prediction. The Reaction forces from each other equations were compared with results by FEA to prove usefulness of new equation.

  • PDF

연성 막구조의 파라메트릭 설계 시스템 개발 (Development of a Parametric Design System for Membrane Structures)

  • 최현철;이시은;김치경
    • 한국공간구조학회논문집
    • /
    • 제16권4호
    • /
    • pp.29-36
    • /
    • 2016
  • The objective of this research is to development of a parametric design system for membrane structures. The parametric design platform for the spatial structures has been designed and implemented. Rhino3D is used as a 3D graphic kernel and Grasshopper is introduced as a parametric modeling engine. Modeling components such as structural members, loading conditions, and support conditions are developed for structural modeling of the spatial structures. The interface module with commercial structural analysis programs is implemented. An iterative generation algorithm for design alternatives is a part of the design platform. This paper also proposes a design approach for the parametric design of Spoke Wheel membrane structures. A parametric modeling component is designed and implemented. SOFiSTik is examined to interact with the design platform as the structural analysis module. The application of the developed interface is to design optimally Spoke Wheel Shaped Ductile Membrane Structure using parametric design. It is possible to obtain objective shape by controlling the parameter using a parametric modeling designed for shape finding of spoke wheel shaped ductile membrane structure. Recently, looking at the present Construction Trends, It has increased the demand of the large spatial structure. But, It requires a lot of time for Modeling design and the Structural analysis. Finally an optimization process for membrane structures is proposed.