• Title/Summary/Keyword: Wheat protein isolate

Search Result 15, Processing Time 0.018 seconds

Preparation and Mechanical Properties of Wheat Protein Isolate Films Cross-linked with Resorcinol

  • Chandrasekhar, M.;Prabhakar, M.N.;Song, Jung-Il
    • Composites Research
    • /
    • v.28 no.2
    • /
    • pp.40-45
    • /
    • 2015
  • The purpose of the present work was to preparation and study of full biodegradable Eco-friendly bio-composites by using renewable resources. In this study, wheat protein isolate (WPI) films were formed by cross linking with resorcinol through solution casting method for packaging applications. By varying the resorcinol content (10, 20, 30, 40, and 50 wt %), its effect on mechanical properties of the wheat protein isolate film was measured. The addition of 20% resorcinol led to an overall increase in the tensile strength from 5.2 to 18.6 MPa and modulus increase from 780 to 1132 MPa than WPI films. The % elongation was increased from 2.8 to 9.05 when compared to unmodified WPI film. A thermal phase transition of the prepared WPI was assessed by means of DSC. FTIR is evident that the characteristic WPI spectral IR bands shifted on cross-linking with resorcinol.

Effect of Soybean Protein Isolate on the Properties of Noodle (분리대두단백질의 첨가가 제면적성에 미치는 영향)

  • Bae, Song-Hwan;Rhee, Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.1301-1306
    • /
    • 1998
  • This study was conducted to investigate the effect of soybean protein isolate (SPI) on the properties of noodle which was made of composite flour blended with SPI extracted at acidic (pH 2.0, 3.0), neutral (pH 7.0) and alkaline (pH 10.0, 12.0) conditions. L-value of dry and cooked-moodle which were made of composite flour was lower than that of 100% wheat flour, but a and b-value wete higher than those of 100% wheat flour, Optimal cooking time of dry-noodle which was made of composite flour was longer than that of 100% wheat flour, but the weight, volume and water absorption of the cooked-noodle were lower than those of cooked-noodle of 100% wheat flour. Breaking force of dry-noodle which was made of composite flour blended with $SPI-2,\;SPI_3,\;SPI_{7}$, and $SPI-{10}$ was lower than that of 100% wheat flour, but the breaking force of dry-noodle which was made of composite flour blended with $SPI-{12}$ at level of 5% and 10% was same as that of 100% wheat flour. Springiness and cohesiveness of the cooked-noodle which was made of composite flour were same as those of 100% wheat flour, but chewiness and hardness were higher than those of 100% wheat flour.

  • PDF

Effect of Soybean Protein Isolate on the Baking Qualities of Bread (분리 대두단백질의 첨가가 제빵적성에 미치는 영향)

  • Bae, Song-Hwan;Rhee, Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.1295-1300
    • /
    • 1998
  • This study was conducted to investigate the effect of soybean protein isolate (SPI) on the baking qualities of bread which was made of composite flour blended with SPI extracted at acidic (pH 2.0, 3.0), neutral (pH 7.0) and alkaline (pH 10.0, 12.0) conditions. The mixogram showed that water absorption of composite flour dough blended with SPI extracted at pH 2.0 and 12.0 was higher than that of 100% wheat flour dough, and mixing time was shorter than that of 100% wheat flour dough. No differences were found between the composite flour blended with SPI at level of 5% and 100% wheat flour on the loaf volume of bread. The loaf volume of bread made of composite flour blended with $SPI_2\;AND\;SPI_3$ at level of 10% was lower than that of 100% wheat flour, but that of $SPI_7,\;SPI_{10},\;and\;SPI_{12}$, which had higher emulsion capacity than $SPI_2,\;SPI_3$ was similar to that of 100% wheat flour. No differences were found between the composite flour blended with SPI at level of 5% and that of 100% wheat flour on springiness, chewiness, cohesiveness, gumminess, adhesiveness and hardness of bread. The composite flour blended with SPI at level of 10% was similar to 100% wheat flour on springiness, chewiness, cohesiveness, gumminess, adhesiveness and hardness of bread except for chewiness, gumminess and hardness of $SPI_2,\;and\;SPI_{12}$ which were significantly higher than that of 100% wheat flour (P<0.05).

  • PDF

Physicochemical Properties and White Layer Cake Making Potentialities of Wheat Flour and Soy Protein Isolate Blends (분리 콩단백 복합분의 이화학적 특성과 white Layer cake 제조적성)

  • Lee, Yong-Suk;Park, Young-Seo;Chang, Hak-Gil
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.534-542
    • /
    • 2006
  • The protein contents of soy protein isolate (SPI) and soft wheat flours were 83.5% and 8.5%, respectively. The addition of SPI increased the protein content but decreased the sedimentation value. Alkaline water retention capacity (AWRC) value increased with SPI addition and was highly correlated with protein content. Increasing SPI flour content significantly decreased the maximum, minimum and final viscosities. Mixograph peak time was positively correlated with protein content and AWRC. The PH and specific gravity of the cake batter increased with increasing SPI content. The SPI addition reduced the loaf and specific loaf volume compared with soft wheat flour. The lightness of the cake crust decreased, while the redness and yellowness increased, with SPI flour addition. SPI addition resulted in a decrease of overall acceptability, but an increase in hardness.

Physicochemical Properties of Soy Protein Isolate Films Laminated with Corn Zein or Wheat Gluten (대두분리단백 필름(soy protein isolate)에 옥수수 단백(zein)과 밀 단백(gluten)을 각각 적층하여 제조한 필름의 이화학적 성질)

  • Lee, Myoung-Suk;Ma, Yu-Hyung;Park, Sang-Kyu;Bae, Dong-Ho;Ha, Sang-Do;Song, Kyung-Bin
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.142-146
    • /
    • 2005
  • Soy protein isolate (SPI) film was laminated with corn zein or wheat gluten to improve functional properties. Both SPI/corn zein-laminated film (Film B) and SPI/wheat gluten-laminated film (Film C) showed increased tensile strength by 150%, compared to control (Film A). Film C showed significant 253% increase in percentage elongation. Water vapor permeability (WVP) of Films B and C decreased slightly compared to Film A. Solubility values of Films B and C were lower than that of Film A. Hunter color values of Films A and C were not significantly different, while Film B showed yellowness due to presence of corn zein. These results suggest SPI/wheat gluten-laminated film is suitable as packaging material.

Plant Proteins Differently Affect Body Fat Reduction in High-fat Fed Rats

  • Kim, Joo-Hee;Lee, Hyo-Jung;Kim, Ji-Yeon;Kim, Mi-Kyung;Kwon, O-Ran
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.3
    • /
    • pp.223-227
    • /
    • 2012
  • This study examined the effects of corn gluten (CG), wheat gluten (WG), and soybean protein isolate (SPI), as well as their hydrolysates, on weight reduction in rats fed a high-fat diet. Eight-month-old male Sprague-Dawley rats (n=70) were fed a high-fat diet (40% of the calories were fat) for 4 weeks. Rats were then randomly divided into seven groups and were fed isocaloric diets with different protein sources for 8 weeks. The protein sources were casein (control group), intact CG (CG group), CG hydrolysate (CGH group), intact WG (WG group), WG hydrolysate (WGH group), intact SPI (SPI group), and SPI hydrolysate (SPIH group). Body weight gain, adipose tissue weights, lipid profiles in plasma and liver; and hepatic activities of carnitine palmitoyl transferase, fatty acid synthase (FAS), malic enzyme, and glucose-6-phosphate dehydrogenase were assessed. The CGH group showed significant weight reduction compared with the other groups. Epididymal fat pad and plasma triglycerides in the CGH group were the lowest and were significantly different than those in the control group. FAS activity in the CGH group was significantly lower than that in the other groups. In conclusion, the CGH diet of these experimental animals demonstrated a weight-reducing effect by lowering the adipose tissue weight and by affecting the activities of hepatic lipogenic enzymes.

Development of PCR Diagnosis System for Plant Quarantine Seed-borne Wheat Streak Mosaic Virus (식물검역 종자전염 Wheat Streak Mosaic Virus의 PCR 검사시스템 개발)

  • Lee, Siwon;Kang, Eun-Ha;Chu, Yeon-Mee;Shin, Yong-Gil;Ahn, Tae-Young
    • Korean Journal of Microbiology
    • /
    • v.49 no.2
    • /
    • pp.112-117
    • /
    • 2013
  • Wheat streak mosaic virus (WSMV), a member of the genus Tritimovirus in Potyviridae, severely impacts wheat and corn seed worldwide, but has yet to be detected in Korea, and hence, every effort should be made to prevent its introduction. To prevent WSMV from entering the country, it is necessary to prepare a specific, sensitive, simple, and fast detection method for routine application to plant quarantine procedures. For this reason, a two-step diagnosis system consisting of RT-PCR and nested PCR is being used for WSMV detection. In addition, a novel positive control was developed for use with the system. WSMV has been detected in seed sweet corn from Japan and seed wheat from USA by a two-step diagnosis system, the details of which are described in this study. After sequence analysis, similarities of 80.6 and 100.0% with other isolates were determined by BLAST. They showed the same topology, which was classified as 4 genotypes by various phylogenetic trees, using a poly protein encoding sequence amplification. In this analysis, WSMV-JSweet-corn2868 (JX845574) is classified as clade B, while WSMV-Uwheat1944-1 (KC754959) and WSMV-Uwheat1944-2 (KC754960) belong to clade D.

Necrotrophic Fungus Pyrenophora tritici-repentis Triggers Expression of Multiple Resistance Components in Resistant and Susceptible Wheat Cultivars

  • Andersen, Ethan J.;Nepal, Madhav P.;Ali, Shaukat
    • The Plant Pathology Journal
    • /
    • v.37 no.2
    • /
    • pp.99-114
    • /
    • 2021
  • Tan spot of wheat, caused by Pyrenophora tritici-repentis (Ptr), results in a yield loss through chlorosis and necrosis of healthy leaf tissue. The major objective of this study was to compare gene expression in resistant and susceptible wheat cultivars after infection with Ptr ToxA-producing race 2 and direct infiltration with Ptr ToxA proteins. Greenhouse experiments included exposure of the wheat cultivars to pathogen inoculum or direct infiltration of leaf tissue with Ptr-ToxA protein isolate. Samples from the experiments were subjected to RNA sequencing. Results showed that ToxA RNA sequences were first detected in samples collected eight hours after treatments indicating that upon Ptr contact with wheat tissue, Ptr started expressing ToxA. The resistant wheat cultivar, in response to Ptr inoculum, expressed genes associated with plant resistance responses that were not expressed in the susceptible cultivar; genes of interest included five chitinases, eight transporters, five pathogen-detecting receptors, and multiple classes of signaling factors. Resistant and susceptible wheat cultivars therefore differed in their response in the expression of genes that encode chitinases, transporters, wall-associated kinases, permeases, and wound-induced proteins, among others. Plants exposed to Ptr inoculum expressed transcription factors, kinases, receptors, and peroxidases, which are not expressed as highly in the control samples or samples infiltrated with ToxA. Several of the differentially expressed genes between cultivars were found in the Ptr resistance QTLs on chromosomes 1A, 2D, 3B, and 5A. Future studies should elucidate the specific roles these genes play in the wheat response to Ptr.

Characteristics and development of Rice Noodle Added with Isolate Soybean Protein (분리대두단백질을 첨가한 쌀국수의 제면특성 및 개발)

  • Park Hee-Kyung;Lee Hyo-Gee
    • Korean journal of food and cookery science
    • /
    • v.21 no.3 s.87
    • /
    • pp.326-338
    • /
    • 2005
  • The purpose of this study was to investigate the effect of isolate soybean protein (ISP) and rice flour on the characteristics of rice noodles. As the levels of ISP and rice flour increased, water binding capacity, swelling power of rice noodle increased. In RVA, pasting temperature, Set back showed an increasing tendency with peak viscosity, holding viscosity, break down, final viscosity of rice noodle increased as the level of rice flour by decreasing. Peak time was not significant. The weight, water absorption and volume of the cooked noodles were decreased. The turbidity of rice noodle increased. The Hunter color L, a-values of the dried rice noodle decreased. Cooked rice noodle quality increased with by decreasing the level of rice flour level. B-values of dried rice noodle and cooked rice noodle increased. Texture profile analysis of cooked rice noodle showed an increase of hardness. Adhesiveness, cohesiveness of cooked rice noodles decreased with by decreasing the level of ISP and rice flour. Gumminess, springiness, chewiness were increased. Sensory evaluation, showed gloss was increased. Hardness and chewiness of the cooked ice noodles were increased. Adhesiveness was not significant. Color and overall- acceptability were increased. Relationship between sensory and mechanical examinations (The overall quality of sensory examination for gloss) had a negative correlation with the mechanical examination for b-value (p.0.05). Mechanical examination for b-value had a positive correlation of sensory evaluation for hardness, chewiness, which had negative correlation of sensory evaluation for color. Scanning Electron, Microscopes observation of rice noodle was showed that the size of the hole grown was increased with by increasing the level of rice flour. From the above results, the most advisable mixture ratio of rice noodle evaluation was can be derived as follows: 171g rice flour, 114g wheat flour, 15g soybean protein isolate, 120ml water, and 6g salt.

Apparent digestibility coefficients of plant feed ingredients for olive flounder (Paralichthys olivaceus)

  • Mostafizur Rahman;Buddhi E. Gunathilaka;Sang-Guan You;Kang-Woong Kim;Sang-Min Lee
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.2
    • /
    • pp.87-96
    • /
    • 2023
  • This study was designed to determine the apparent digestibility coefficients of soybean meal, soy protein concentrate (SPC), soy protein isolate (SPI), rapeseed meal (RSM), pea protein concentrate (PPC), wheat gluten meal (WGM) and wheat flour (WF) for olive flounder, Paralichthys olivaceus. A reference diet (RF) was formulated to meet the nutrient requirements of olive flounder with 1% chromic oxide (Cr2O3) as an inert indicator. Test diets were prepared to contain 70% RF and 30% of the test ingredient. Olive flounder, averaging 150 ± 8.0 g, was cultured in 400-L fiberglass tanks at a density of 25 fish per tank. Fecal collection columns were attached to each tank. Fecal samples were obtained from triplicate groups of fish for 4 weeks. Dry matter digestibility of SPC (75%) and WGM (76%) were significantly higher than the other test ingredients. Protein digestibility of SPC (85%), PPC (88%) and WGM (89%) were significantly higher than the other test ingredients, and protein digestibility of RSM (77%) and WF (76%) was lower than the other ingredients tested. Lipid digestibility of SPC (72%) and SPI (69%) were significantly higher than the other test ingredients. Energy digestibility of SPC (85%) and WGM (82%) were significantly higher than that of others tested ingredients. The availability of amino acids in WGM was generally higher than in other plant-feed ingredients. Therefore, SPC and WGM were seems to be efficient as potential protein sources for olive flounder compared to other tested ingredients. Overall, findings of the current study may assist in more efficient and economical formulation of diets using plant feed ingredients for olive flounder.