• Title/Summary/Keyword: Wetting agent

Search Result 69, Processing Time 0.026 seconds

Fabrication of Low-Shrinkage Reaction-Bonded Alumina Ceramics (저수축 반응소결 알루미나 세라믹스의 제조)

  • 박정현;이현권;정경원;염강섭
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.6
    • /
    • pp.419-430
    • /
    • 1992
  • Fabrication possibility of low-shrinkage alumina without oxidation and wetting agent was presented on the basis of observation about oxidation behavior, microstructure and physical characteristics of such reaction agents free Al2O3-Al system. The composition less than Al 10w/o where Al can act as a sintering agent for Al2O3 was excluded. Under the condition of present experiments oxidation of Al2O3-Al system was dependent not on holding time but mainly on oxidation temperature. In thes case of Al powder not comminuted effectively during powder mixing of Al2O3-Al, columnar structure which would act as a hindrance to the densification during sintering developed more during oxidation with higher Al contents, and which made the fabrication of low-shrinkage Al2O3 ceramics impossible. If Al powder was comminuted effectively due to co-mixed Al2O3 characteristics, densification was improved because of no columnar structure and made the fabrication of sintered body with -2.7% dimensional change and 81% relative density possible. As a result, it is possible to fabricate dense low-shrinkage Al2O3 ceramics without oxidation and wetting agent under conditions such as smaller particle size of Al, Al contents below 50v/o, higher green density of Al2O3-Al compact and the use of Al2O3 powder used for high-density ceramics.

  • PDF

Fabrication and Characterizations of Nickel Metal Mask with fine Pitch by Additive Process (Additive 공정을 이용한 미세 피치용 니켈 메탈마스크의 제조 및 특성평가)

  • Park, Eui-Cheol;Lim, Jun-Hyung;Kim, Kyu-Tae;Park, Si-Hong;Hwang, Soo-Min;Shim, Jong-Hyun;Jung, Seung-Boo;Kim, Bong-Soo;Joo, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.11
    • /
    • pp.925-931
    • /
    • 2007
  • We successively fabricated the Ni metal mask by additive method and evaluated the effects of wetting agents addition on the microstructure, hardness, and friction coefficient. In the process, the additive patterns with fine hole and pitch were made by photolithography technique and subsequently Ni plate was electroformed on the patterns. We found that the microstructure and mechanical properties were significantly varied when the different combinations of the wetting agents were used. When the wetting agents of both SF-1 and SF-2 were added, the microstructure consisted of crystal and amorphous phases, the grain size reduced to 5-40 nm, the RMS value decreased to 11.4 nm and the wear resistance improved. In addition, the hardness was as high as 638 Hv which is higher than that of commercial stainless steel mask and this improvement is probably due to the presence of amorphous Phase and fine grain size. The improvement of the wear resistance can provide a higher reliability and a longer service life.

Characterizations of the Mechanical Properties and Wear Behavior of Ni Plate Fabricated by the Electroforming Process (Electroforming을 이용하여 제조한 Ni 기판의 기계적 특성 및 내마모 거동 분석)

  • Lee, Seung-Yi;Jang, Seok-Hern;Lee, Chang-Min;Choi, Jun-Hyuk;Joo, Jin-Ho;Lim, Jun-Hyung;Jung, Seung-Boo;Song, Keun
    • Korean Journal of Materials Research
    • /
    • v.17 no.10
    • /
    • pp.538-543
    • /
    • 2007
  • We fabricated the Ni plate by electroforming process and evaluated the microstructure, mechanical properties and wear behavior of the Ni plate. Specifically, the effects of addition of wetting agents, SF 1 and SF 2 solutions, on the microstructure and properties were investigated. The microstructure and surface morphology were characterized by transmission electron microscopy (TEM) and atomic force microscopy (AFM), respectively, and friction coefficient was measured by the ball-on-disk method. We found that the microstructure and mechanical properties of Ni plate were changed with kind and amount of wetting agents used. The hardness and tensile strength of Ni plate formed without wetting agents was 228 Hv and 660.7 MPa, respectively, whiled when wetting agent was added, those were improved to be 739 Hv and 1286.3 MPa. These improvements were probably due to the finer grain size and less crystallization of Ni. In addition, when both wetting agents were added, the friction coefficient was reduced from 0.73 to 0.67 which is partially caused by the improved hardness and smooth surface.

Scouring Effect of PAPE(Polyoxyethylene Alkyl Phosphoric Ester) on Cotton Fibres (면섬유에 대한 폴리옥시에틸렌 알킬 인산에스테르의 정련효과)

  • Ha, Youn-Shick;Kwak, Gyeong-Do;Chang, Yoon-Ho
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.974-978
    • /
    • 1999
  • This study was concerned with the scouring effect of anionic surfactants, PAPE(sodium polyoxyethylene alkyl phosphoric ester) for cotton fibres. Sodium polyoxyethylene(7) nonylphenyl phosphoric ester(CPB-1) and the sodium polyoxyethylene(7) tridecyl phosphoric ester(CPB-2) were synthesized by the phosphoric esterification reaction from NP-7(polyoxyethylene(7) nonylphenyl ether) and TDA-7(polyoxyethylene(7) tridecyl ether) as scouring agents. Defoaming ability, fibre wetting time and absorbency rate of scouring agents were investigated. Being compared with the conventional scouring agent(Ultravon GP; Ciba-guyge Co.), CPB-1 and CPB-2 showed a higher defoaming ability in the cotton scouring process at room temperature. And CPB-1 has a higher wetting effect than the agents, CPB-2 or GP in distilled water bath but CPB-2 showed more scouring effect in 1.2 wt % NaOH solution bath.

  • PDF

Comparison of Fire Extinguishing Effects for Water Mist Additives (미분무수 첨가제의 소화효과 비교)

  • Kim, Seung Il;Shin, Chang Sub
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.6
    • /
    • pp.23-28
    • /
    • 2013
  • In order to improve extinguishing performance of water mist, many studies of additives have been conducted. In this study, viscosity agent which has the ability to improve extinguishing performance by adhering to the surface on fire was used and fluorine-free surfactant was also added to water to enhance water's wetting ability. This study aimed to verify optimal concentration of extinguishing of additives according to fire source and extinguishing performance by comparison with pure water. In case of wood crib fire, the results show that flame suppression and extinguishing time of sodium alginate 0.4 wt.% are 3.4 times and 2.2 times shorter than those of pure water in 0.2 MPa respectively. It seems that large amount of water adhere to surface on fire, thus cooling effect on surface was enhanced. Also water consumption of sodium alginate 0.4wt.% is up to 65% lower than that of pure water. In case of heptane fire, extinguishing time of cocobetaine 0.1 wt.% is 9.7 times shorter than that of pure water in 0.2 MPa. It is thought that because cocobetaine can block oxygen and suppress oil mist by making emulsion film on fire surface due to a low surface tension. On the other hand, water consumption of cocobetaine 0.1 wt.% is 92% lower than that of pure water.

Effect of Wetting Agent on Acoustic Emission of Wood (습윤제(濕潤劑) 농도(濃度)에 따른 목재(木材)의 음향방사(音響放射))

  • Kang, Ho-Yang;Hur, Jong-Yun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.57-64
    • /
    • 1996
  • 제지공장에서 사용하는 습윤제는 물의 표면장력을 낮춤으로써 목재섬유가 물을 빨리 흡수하여 팽윤하도록 도와준다. 목재섬유가 물을 흡수하여 팽윤하는 과정을 밝히지 위한 연구가 많이 진행되어 왔지만 목재섬유와 물의 상호작용을 상세히 연속적으로 측정할 방법이 전에는 별로 없었다. 목재섬유가 팽윤할 때 발생하는 팽윤압력은 음향방사를 동반하기 때문에 이를 측정하여 팽윤과정을 알아내는 기술이 개발되었다. 본 연구에서는 이 방법을 이용하여 목재를 여러 농도의 습윤제에 담갔을 때 발생하는 음향방사와 중량증가를 측정하여 이 두 변량의 상관을 조사하고 이 방법이 목재의 습윤과정 연구에 유용하게 사용될 수 있는지를 조사하였다. 아까시나무와 라디에타 파인의 두 수종을 사용하였는데 두 수종의 흡수 형태는 매우 달랐다. 5분 동안 용액에 침지하였을 때 후자가 전자보다 10배 정도 더 많이 중량증가하였으며, 발생한 음향방사도 후자가 전자보다 훨씬 많았다. 아까시나무의 중량증가와 음향방사는 습윤제 농도에 거의 무관하였으나 라디에타 파인의 음향방사는 습윤제 농도의 증가에 따라 증가하였으며 라디에타 파인의 중량증가는 습윤제의 표면장력 변화와 일치하였다. 수종별 중량증가와 음향방사의 관계는 아까시나무가 음의 상관을 나타냈으나 라디에타 파인은 양의 상관을 나타내었다. 자비처리 시편은 무처리 시편보다 음향방사가 적었다.

  • PDF

Comparison of physical properties and air permeability in the sawdust during wetting and drying procedure (습윤 및 건조과정에서의 톱밥내 물리적 성상과 공기투과성의 변화)

  • Kim, Byung Tae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.4
    • /
    • pp.103-111
    • /
    • 2009
  • Moisture is one of the important design factors that affects to the changes of physical properties and air permeability in the composting matrix. This study examines the effects of moisture during the wetting and drying procedure on physical properties like bulk density, particle size, free air space and air permeability in the sawdust used as the bulking agent in composting process. During both procedures of wetting and drying of the water, with increasing moisture content, bulk density and particle size increased, but FAS decreased. In the range of near 40 to 60% moisture content on a wet basis, particle size and FAS in wetting procedure were larger and higher than those in drying procedure. During wetting procedure, pressure drop continuously decreased ranging from near 20 to 60% moisture content, despite of decreasing FAS as a consequence of increasing moisture, and then over the range of 60% moisture content, pressure drop rapidly increased to the saturated moisture condition while the pore space was filled with the water. On the other hand, during drying procedure, pressure drop decreased from the saturated condition to 40% moisture content. In the recommended range of 50 to 60% moisture content for composting operation, pressure drop in wetting procedure were lower than in drying procedure. For the enhancement of the air permeability in the composting matrix, the wetting procedure was proper than the drying procedure, and the optimum moisture content for the efficient composting operation was appeared to be near 60%.

Separation of PET and PVC by Flotation

  • Owada, Shuji;Yamamoto, Mika;Kanazaki, Motohiko
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.730-733
    • /
    • 2001
  • Separation of PET and PVC is a key technology to achieve effective plastics recycling but no efficient and economically feasible method has been developed yet. The application of flotation was investigated by many researchers but the causes of the selectivity were not clarified. This paper described the adsorption mechanism of wetting agents onto plastics, using the agents which have various polarity and hydrocarbon chain length. It was found that (1) hydrophobic interaction played a predominant role for the adsorption, (2) anionic wetting agents could be adsorbed onto negatively charged plastics with the polar radicals oriented outer part of the plastics, then often depressed plastics more effectively than cationic agents, and (3) PET and PVC could be separated with dodecyamine hydrochloride and sodium dodecyl- sulfonate in the concentration ranges of 1.0$\times$10$^{[-10]}$ $^{6}$ -5.0$\times$10$^{[-10]}$ $^{5}$ and 2.0$\times$10$^{[-10]}$ $^{6}$ -1.0$\times$10$^{[-10]}$ $^{5}$ mo1/1, respectively.

  • PDF

Curing Kinetics and Chemorheological Behavior of No-flow Underfill for Sn/In/Bi Solder in Flexible Packaging Applications

  • Eom, Yong-Sung;Son, Ji-Hye;Bae, Hyun-Cheol;Choi, Kwang-Seong;Lee, Jin-Ho
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1179-1189
    • /
    • 2016
  • A chemorheological analysis of a no-flow underfill was conducted using curing kinetics through isothermal and dynamic differential scanning calorimetry, viscosity measurement, and solder (Sn/27In/54Bi, melting temperature of $86^{\circ}C$) wetting observations. The analysis used an epoxy system with an anhydride curing agent and carboxyl fluxing capability to remove oxide on the surface of a metal filler. A curing kinetic of the no-flow underfill with a processing temperature of $130^{\circ}C$ was successfully completed using phenomenological models such as autocatalytic and nth-order models. Temperature-dependent kinetic parameters were identified within a temperature range of $125^{\circ}C$ to $135^{\circ}C$. The phenomenon of solder wetting was visually observed using an optical microscope, and the conversion and viscosity at the moment of solder wetting were quantitatively investigated. It is expected that the curing kinetics and rheological property of a no-flow underfill can be adopted in arbitrary processing applications.

A Study on the Development of Fire Extinguishing Agent and Extinguishing System for ESS Fire (ESS 화재전용 소화약제 및 소화시스템 개발에 관한 연구)

  • Lee, Yeon-Ho;Lee, Joo-Hyung;Kim, Soo-Jin;Chon, Sung-Ho;Choi, Byoung-Chul;Oh, Seung-Ju;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.147-155
    • /
    • 2020
  • This paper presents a study on the development of a fire extinguishing agent and extinguishing system for an energy storage system (ESS) fire. The fire extinguishing agent designed to extinguish an ESS fire is a highly permeable fire extinguisher that reduces the surface tension and viscosity while bringing about cooling action. This is the main extinguishing effect of this type of wetting agent, which displays the characteristics of fire extinguishing agents used for penetrating the battery cells inside the ESS module. For the fire extinguishing system, a local application system was designed to suppress fire on a rack-by-rack basis. A 360° rotating nozzle was inserted into the rear hall of the ESS module, and general nozzles were installed in the rack to maximize the fire extinguishing effect. The fire extinguishing agent was strongly discharged by virtue of the gas release pressure. Experiments on fire suppression performance with ESS module 1 unit and module 3 units showed that all visible flames were extinguished in 8 s and 9 s, respectively, by the fire extinguishing agent. In addition, based on confirming reignition for 600 s after the fire extinguishing agent was exhausted, it was confirmed that the ESS fire was completely extinguished without reignition in all fire suppression performance experiments.