• 제목/요약/키워드: Wetted area

검색결과 52건 처리시간 0.026초

초음파 측정법을 이용한 정상상태의 푸울비등 연구 (Stydy of Pool Boiling under Steady State using Ultrasonic Measurement)

  • 장길홍
    • 한국해양공학회지
    • /
    • 제6권2호
    • /
    • pp.35-40
    • /
    • 1992
  • A recently developed new technique for measuring the fraction of wetted area has applied to pool boiling of water. The basis of the new applied technique of ultrasonic makes use of the reflection of ultrasonic from the vapour surface to measure the fraction of wetted area values. The results are the measured fraction of wetted area values in nucleate and transition boiling and the pool boiling curve for water under steady state conditions. The measurement of this paper shows a fraction of wetted areaf around 0.98 at the critical heat flux for water.

  • PDF

은나노 공조시스템의 열교환기 설계를 위한 노즐의 분무특성 실험 (An Experimental Study on Nozzle Spray Characteristics for the Design of Heat Exchangers of a Nano-Silver HVAC System)

  • 허주영;강병하
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.534-537
    • /
    • 2008
  • Growing attention has been given to sterilizing and antibacterial effects of nano-silver, recently. Nano-silver solution can be applied to the heat exchanger in an air conditioner to prevent bad smell or bacteria. The present study is directed at the nozzle spray characteristics over a heat exchanger. This problem is of particular interest in the design of a nano-silver HVAC system. The effects of nozzle position and flow rate on the spray area over a horizontal surface have been investigated for various nozzles. The results obtained indicate that spray area is increased as the height of spray position is increased or mass flow rate is increased. The wetted area over a practical heat exchanger is also studied at a given nozzle height. It is found that the wetted area is gradually increased with an increase in the flow rate. However, the effect of flow rate on the wetted area is a little affected by flow rate in the range of too much flow rate. It is also found that the wetted area is decreased as the inclination angle of a heat exchanger is increased.

  • PDF

자연하천 해석을 위한 SU/PG 모형의 개발 (SU/PG Model Evaluation for river dynamics)

  • 한건연;박경옥;백창현
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.1331-1334
    • /
    • 2004
  • Wet/Dry phenomena typically incorporate a number of complex flow mechanism. These include a momentum transfer and turbulent mixing caused by the delivery of water. However currently available one dimensional schemes applicable to wet/dry process cannot effectively simulate such process. Two dimensional finite element model, SU/PG, is used to simulate complex flow in this study. The Wetted Area Method in SU/PG allows elements to transition gradually between wet and dry states. The model is applicable to a straight river reach with irregular bathymetry. Wet/dry calculation using the wetted area method can simulate simple numerical test. The computed results of velocity vectors and water depth agree with those of observed. The methodology Presented in this study will contributed to two-dimensional wet/dry analysis in a river in this country.

  • PDF

Integrated dynamics modeling for supercavitating vehicle systems

  • Kim, Seonhong;Kim, Nakwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권2호
    • /
    • pp.346-363
    • /
    • 2015
  • We have performed integrated dynamics modeling for a supercavitating vehicle. A 6-DOF equation of motion was constructed by defining the forces and moments acting on the supercavitating body surface that contacted water. The wetted area was obtained by calculating the cavity size and axis. Cavity dynamics were determined to obtain the cavity profile for calculating the wetted area. Subsequently, the forces and moments acting on each wetted part-the cavitator, fins, and vehicle body-were obtained by physical modeling. The planing force-the interaction force between the vehicle transom and cavity wall-was calculated using the apparent mass of the immersed vehicle transom. We integrated each model and constructed an equation of motion for the supercavitating system. We performed numerical simulations using the integrated dynamics model to analyze the characteristics of the supercavitating system and validate the modeling completeness. Our research enables the design of high-quality controllers and optimal supercavitating systems.

계면활성제의 농도가 유하액막의 열전달 특성에 미치는 영향에 관한 실험적 연구 (An Experimental Study on Heat Transfer in a Falling Liquid Film with Surfactant)

  • 김경희;강병하;이대영
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.150-155
    • /
    • 2006
  • Falling liquid plays a role in a wide variety of naturally occurring phenomena as well as in the operation of industrial process equipment where heat and mass transfer take place. In such cases, it is required that the falling film should spread widely on the surface forming thin liquid film to enlarge contact surface. An addition of surface active agent to a falling liquid film affects the flow characteristics of the falling film. In this study the heat transfer characteristics for a falling liquid film has been investigated by an addition of the surface active agents. The falling liquid film was formed on a vertical flat plate. As the mass flow rate of liquid falling film is increased, the wetted area is a little increased while the heat transfer rate as well as heat transfer coefficient is significantly increased. It is also found that both wetted area and heat transfer rate is substantially increased while heat transfer coefficient is a little increased with an increase in the surfactant concentration at a given mass flow rate.

  • PDF

Development of the computational program to evaluate heat leak on LNG tank of Natural Gas Vehicle

  • Minkasheva, Alena;Kim, Sung-Joon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권7호
    • /
    • pp.771-781
    • /
    • 2006
  • Car acceleration or deceleration induce the surface slope of liquid fuel in the LNG tank. Slope changes the surface area wetted by liquid fuel in the tank and consequently heat leak to the tank. The Fortran program, 'Pro-Heatleak', is developed to evaluate heat leak on LNG tank. The verification test proves the high accuracy of the developed program. The difference between MathCad and computational results is less than 0.07 %. Computational analyses of heat leak are carried out for 10 gallons and 20 gallons of fuel vapor in the tank. With the increasing of fuel vapor volume by 10 percent the wetted surface area and heat leak respectively decrease by 13 percent. The difference between maximum and minimum heat leak is about 10 percent for both 10 gallons and 20 gallons of fuel vapor in the tank.

灌漑用水路의 水路損失率 算定에 關한 硏究 (A Study on the Estimation of Watter Loss Rates in Irrigation Canals)

  • 구자웅;이기춘;김재영;이재영
    • 한국농공학회지
    • /
    • 제24권2호
    • /
    • pp.56-66
    • /
    • 1982
  • This study was carried out in order to estimate water losses in irrigation canals, which may be used to evaluate the water requirement for irrigation projects. The conveyance losses were measured by the inflow-outflow method, the seepage losses were measured by the ponding method, and the operation losses in the course of irrigation were calculated by comparing the two kinds of losses. The results obtained in this experiment were as follows; 1. Conveyance losses per unit area of wetted perimeter by the main irrigation canal, the secondary irrigation canal and the tributary irrigation canal, were 1.399${\times}10^{-5}m^3/sec/m^2$, 5.154${\times}10^{-5}m^3/sec/m^2$, and 2.67${\times}10^{-5}m^3/sec/m^2$ respectively in the Goong-sa area. And they were 1.934${\times}10^{-5}m^3/sec/m^2$, 2.149${\times}10^{-5}m^3/sec/m^2$, and 4.558${\times}10^{-5}m^3/sec/m^2$ respectively in the Seong-dug area. 2. Seepage losses per unit area of wetted perimeter by the secondary irrigation canal and the tributary irrigation canal, were 2.180${\times}10^{-6}m^3/sec/m^2$ and 2.168${\times}10^{-6}m^3/sec/m^2$ in the Goong-sa area, 1.150${\times}10^{-6}m^3/sec/m^2$ and 1.084${\times}10^{-6}m^3/sec/m^2$ in the Seong-dug area respectively. 3. Operation losses per unit area of wetted perimeter by the secondary irrigation canal and the tributary irrigation canal, were 4.936${\times}10^{-5}m^3/sec/m^2$ and 2.453${\times}10^{-5}m^3/sec/m^2$ in the Goong-sa area, 2.034${\times}10^{-5}m^3/sec/m^2$ and 4.450${\times}10^{-5}m^3/sec/m^2$ in the Seong-dug area respectively. 4. Conveyance, seepage and operation losses in the Goong-sa area were 6.7%, 94.6%, and 14.0% more than those in the Seong-dug area. Operation losses amount to about 17 times as much as seepage losses in the Goong-sa area and about 29 times in the Seong-dug area. 5. The seepage losses depend much on the soil texture, ranging from 7.437${\times}10^{-7}m^3/sec/m^2$ to 2.430${\times}10^{-6}m^3/sec/m^2$. 6. Water loss rates in the main irrigatin canal, the secondary irrigation canal and the tributary irrigation canal, were estimated as 8.49%, 37.27% and 9.81% respectively in the Goong-sa area. And they were estimated as 15.10%, 32.67% and 13.78% respectively in the Seong-dug area.

  • PDF

Numerical investigation of a novel device for bubble generation to reduce ship drag

  • Zhang, Jun;Yang, Shuo;Liu, Jing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권5호
    • /
    • pp.629-643
    • /
    • 2018
  • For a sailing ship, the frictional resistance exerted on the hull of ship is due to viscous effect of the fluid flow, which is proportional to the wetted area of the hull and moving speed of ship. This resistance can be reduced through air bubble lubrication to the hull. The traditional way of introducing air to the wetted hull consumes extra energy to retain stability of air layer or bubbles. It leads to lower reduction rate of the net frictional resistance. In the present paper, a novel air bubble lubrication technique proposed by Kumagai et al. (2014), the Winged Air Induction Pipe (WAIP) device with opening hole on the upper surface of the hydrofoil is numerically investigated. This device is able to naturally introduce air to be sandwiched between the wetted hull and water. Propulsion system efficiency can be therefore increased by employing the WAIP device to reduce frictional drag. In order to maximize the device performance and explore the underlying physics, parametric study is carried out numerically. Effects of submerged depth of the hydrofoil and properties of the opening holes on the upper surface of the hydrofoil are investigated. The results show that more holes are favourable to reduce frictional drag. 62.85% can be achieved by applying 4 number of holes.

Injector에 따른 가.감속시 공연비 변동에 관하여 (Effects of injector on the A/F variations during acceleration and deceleration)

  • 이종수;조석구
    • 오토저널
    • /
    • 제15권1호
    • /
    • pp.67-72
    • /
    • 1993
  • Wall wetting phenomenon in the intake port of an MPI engine was investigated with different kinds of injectors by an A/F step response test and analysis was done based on the simple wall wetting model to find out a certain correlation between wall wetting and A/F variations. It was found that (1) At fully warmed condition of 90.deg.C water temperature, around 40-60% of injected fuel was wall wetted, (2) At cold condition of 45.deg.C Water temperature, around 68-80% of injected fuel was wall wetted, and (3) A/F variations during acceleration and deceleration were influenced by the wetting area, the fuel droplet size, and the amount of wall wetting fuel.

  • PDF

Resistance Reduction of a High Speed Small Boat by Air Lubrication

  • Jang Jin-Ho;Kim Hyo-Chul
    • Journal of Ship and Ocean Technology
    • /
    • 제10권1호
    • /
    • pp.1-9
    • /
    • 2006
  • The resistance reduction by an air lubrication effect of a large air cavity covering the hull bottom surface and the similarity relations involved have been investigated with a series of towing tank tests of three geometrically similar models. The test results of geometrically similar models have indicated that a large air cavity was formed beneath the bottom having a backward-facing step by artificially supplying air is effective for resistance reduction. The areas of air cavity and the required flow rates of air are directly related to the effective wetted surface area. The traditional extrapolation methods seem to be applicable to the estimation of the resistance in the tested range if corrections are made to account the changes in the frictional resistance caused by the changes in the effective wetted surface area. To investigate the effectiveness of air lubrication in improving the resistance performance of a practical ship, a small test boat having a backward-facing step under its bottom has been manufactured and speed trials in a river have been performed. Air has been supplied artificially into the downstream region of the bottom step to form a large air cavity covering the bottom surface. The results have confirmed the practical applicability of air lubrication for the resistance reduction of a small high-speed boat.