• Title/Summary/Keyword: Wet-Lay-up

Search Result 12, Processing Time 0.04 seconds

Low-velocity Impact Characterization of Laminated Composite Materials (복합재료의 저속충격 특성)

  • Han, Ji-Won
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.34-37
    • /
    • 2008
  • The composite materials are widely used in the many applications of industry as well as aerospace field because of their high specific stiffness and strength which benefits the material and provides potential energy savings. However, composite materials also have a low property about external applied impact. In this paper, impact tests were conducted on different sample types(glass, carbon and kevlar composite) to obtain information such as absorbed energy and composite deformation using an instrumented impact test machine (DYNATUP 8250). 3 type samples were compared to experimental results. The data from impact test provided valuable information between the different type samples by wet lay up. This paper shows results of that kevlar composite has larger absorption energy and deformation than others.

Structure Test and Vibration Analysis for Small Aircraft (소형항공기(반디호) 몰드의 구조시험 및 진동해석)

  • Jung, Do-Hee;Kim, Jin-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.692-697
    • /
    • 2005
  • A canard type aircraft, which has good wing stall and stall/spin proof characteristics, is being developed. The previous first and second prototypes, having full depth core sandwich type wing and fixed landing gear, was built for test flights. Newly developing Firefly will be equipped with retractable landing gear and conventional foam core sandwich laminate for wing and fuselage. For manufacturing, composite material process has been studied including coupon tests. Wet lay-up onto foam core with glass fabric using lay-up mold has been chosen, and composite material parts are cured under room temperature and atmospheric pressure condition. In general, molded parts show so good surface smoothness and standardized quality that are best in mass production. In this study, we present the mold technology and development status for small aircraft firefly.

  • PDF

Compressive Strength of Unidirectional Glass/Epoxy Specimens Processed by Wet Lay-up at Room Temperature (수작업/상온경화시킨 일방향 Glass/Epoxy 시편의 압축강도)

  • Lee, Jong-Won;Kim, Jin-Won
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • The present study provides the compressive design allowable of a unidirectional glass/epoxy composite laminate processed by wet lay-up at room temperature. The compressive strength values measured from 39 specimens have been assumed to follow the two-parameter Weibull distribution. Following the statistical guidelines provided by MIL-HDBK-17F, the B-basis and A-basis values of the aforementioned laminate are found to be 82.6% and 65.9%, of the mean compressive strength, respectively. The B-basis value is then discounted further at 50% for the in-situ application on the main wing spar caps of an experimental canard aircraft.

  • PDF

A Study on Fatigue Crack Propagation Mechanism of GFRP in Synthetic Sea Water

  • Kim, Yon-Jig;Lim, Jae-Kyoo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1380-1385
    • /
    • 2001
  • This paper evaluates the fatigue fracture behavior of a chopped strand glass mat/polyester composite both in ai, and sea water, Bending fatigue (R=-1) was performed on dry and wet specimens, that is respectively in air and sea water. Where the pH concentration of sea water was controlled to 6.0,8.2, 10.0 and the wet specimens were immersed in the sea waters for 4 months. Throughout the tests, fatigue cracks both in the dry and wet specimens, tested in the air or sea water, occurred at the beginning of the cycle, followed by either of two regions one decreasing and the other increasing as the crack growth rate increases.

  • PDF

Pull-out Strengths of GFRP-Concrete Bond Exposed to Applied Environmental Conditions

  • Kabir, Muhammad Ikramul;Samali, Bijan;Shrestha, Rijun
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.69-84
    • /
    • 2017
  • This paper presents results of an experimental investigation on the behaviour of bond between external glass fibre reinforced polymer reinforcement and concrete exposed to three different environmental conditions, namely, temperature cycles, wet-dry cycles and outdoor environment separately for extended durations. Single shear tests (pull-out test) were conducted to investigate bond strengths (pull-out strengths) of control (unexposed) and exposed specimens. Effect of the exposure conditions on the compressive strength of concrete were also investigated separately to understand the effect of changing concrete compressive strength on the pull-out strength. Based on the comparison of experimental results of exposed specimens to control specimens in terms of bond strengths, failure modes and strain profiles, the most significant degradation of pull-out strength was observed in specimens exposed to outdoor environment, whereas temperature cycles did not cause any deterioration of strength.

Processing - Interlaminar Shear Strength Relationship of Carbon Fiber Composites Reinforced with Carbon Nanotubes (탄소나노튜브로 보강된 탄소섬유복합재의 제조공정과 층간전단강도)

  • Kim, Han-Sang
    • Composites Research
    • /
    • v.24 no.5
    • /
    • pp.34-38
    • /
    • 2011
  • Carbon nanotubes (CNTs) have been widely investigated as reinforcements of CNT/polymer nanocomposites to enhance mechanical and electrical properties of polymer matrices since their discovery in the early 90's. Furthermore, the number of studies about incorporating CNTs into carbon fiber reinforced plastics (CFRP) to reinforce their polymer matrices is increasing recently. In this study, single-walled carbon nanotubes (SWNT) were dispersed in epoxy with 0.2 wt.% and 0.5 wt.%. Then, the SWNT/epoxy mixtures were processed to carbon fiber composites by a vacuum assisted resin transfer molding (VARTM) and a wet lay up method. The processed composite samples were tested for the interlaminar shear strength (ILSS). The relationship between the interlaminar shear strengths and processing, and the reinforcement mechanism of carbon nanotubes were investigated. CNT/epoxy nanocomposite specimens showed the increased tensile properties. However, the ILSS of carbon fiber composites was not enhanced by reinforcing the matrix with CNTs because of processing issues caused by increased viscosity of the matrix due to addition of CNTs particularly for a VARTM method.

A Study on Stress Corrosion Cracking of Fiber Reinforced Composite by Slow Strain Rate Test (저변형률시험법에 의한 섬유강화 복합재료의 응력부식균열에 관한 연구)

  • Lim, Jae-Gyu;Choi, Tae-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3433-3440
    • /
    • 1996
  • This paper was investigation of the stres corrosion cracking(SCC) mechanism and the properties of corrosion fracture surface of glass fiber reinforced plastics(GFRP) produced by hand lay up(HLU) method in synthetic sea water. Test material is GFRP, that was used vinylester type epoxy acrylate resin and an unsaturated polyester as the matrix and the chopped strand mat(CSM) type E-glss fiber as the reinforcement. The slow strain rate test(SSRT) was performed on dry, wet and saturated wet specimens in sea water. Here the pH concentration of synthetic sea water was 8.2 and the strain rate is 1 x $10^{-6}$($sec^{-1}$) and test temperature ranges varied from $-60^{\circ}C$ to $80^{\circ}C$. It could be confirmed the fact that wet specimens tested at a particular test temperature ranges were appeared the eviences of SCC such as con-planar, mirror and hackle zone. Moreover, SCC of GFRP in sea water was characterised by falt fracture surfaces with only small amounts of fiber pull-out, in partial.

소형 장기체공형 무인기 날개의 구조 개량 설계

  • Lee, Jung-Jin
    • Aerospace Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.179-185
    • /
    • 2002
  • In this study, the structural design method for the modified long-endurance UAV is presented. Composite materials using room temperature curing method and wet lay up procedure is applied to all wing structures. The modified wing is composed of 3-piece component for improvement of ground handling. As the sandwich structure is efficient for light weight and high stiffness, all skin is used the sandwich consisting of glass/ epoxy fabric and balsa wood. The proof test is performed up to limit load corresponding to 4g load condition for the modified wing structure.

  • PDF

Full field strain measurements of composite wing by digital image correlation

  • Pagani, A.;Zappino, E.;de Miguel, A.G.;Martilla, V.;Carrera, E.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.1
    • /
    • pp.69-86
    • /
    • 2019
  • This paper discusses the use of the Digital Image Correlation (DIC) technique for the displacement and strain measurements of a wet lay-up composite wing. As opposed to classical strain gages, DIC allows to conduct full field strain analysis of simple to complex structural parts. In this work, wing-up bending tests and measurements of the composite wing of the Dardo Aspect by CFM Air are carried out through an ad-hoc test rig and the Q-400 DIC system by Dantec Dynamics. Also, the results are used to validate a finite element model of the structure under investigation.

A study on fatigue properties of GFRP in synthetic sea water (인공해수중 GFRP의 피로특성에 관한 연구)

  • 김연직;임재규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1351-1360
    • /
    • 1993
  • The fatigue behavior of GFRP composites is affected by environmental parameters. Therefore, we have to study on effect of sea water on fatigue behavior of GFRP composites as to maintain the safety and confidence in design of ocean structure of GFRP. In this paper, we investigated the fatigue properties of chopped strand glass mat/polyester composite in synthetic sea water. (pH 8.2) In case of the glass fiber (CSM type) reinforced polyester composite materials, the fatigue crack in the both dry and wet specimens tested in air or synthetic sea water occurred at the initial of cycle. Thereafter, it was divided with two regions that one decreased with the crack extension and the other increased with the crack extension. The transition point occurred during the crack propagation shifted to high ${\Delta}K$ value as load increase but its point is not changed regardless of immersion or test environment under a constant load. The synthetic sea water degrades the bond strength between fiber and matrix, thereby the tendency of rapid deceleration and acceleration of the crack growth was appeared.