• 제목/요약/키워드: Wet chemical preparation

검색결과 81건 처리시간 0.03초

습식 화학적 환원법에 의한 AgNO3로부터 Ag 분말의 제조 1. 균일한 구형 Ag 분말의 제조를 위한 최적 반응계 확립 (Preparation of Ag Powder from AgNO3 by Wet Chemical Reduction Method1. The Establishment of Optimum Reaction System for the Preparation of Spherical Ag Powder)

  • 윤기석;박영철;양범석;민현홍;원창환
    • 한국분말재료학회지
    • /
    • 제12권1호
    • /
    • pp.56-63
    • /
    • 2005
  • Ag powder was prepared from $AgNO_3$ by wet chemical reduction method using various reduction agent system involving $AgNO_3$, $AgNO_2$(AgCl) and Ag complex ion aqueous solution. The pure Ag powder could be prepared regardless of reaction system but the particle shape and distribution were affected very much according to the kind of reduction agents and reaction systems. The optimum reaction system for the preparation of the silver powder having the uniform particle shape and size distribution was Ag complex ion aqueous solution-reduction agent system and in particular, $H_2O_2$ and $C_6H_8O_6$as a reduction agent leaded the more uniform particle shape and size distribution.

Oxalate 침전을 이용한 Li-과량 LiMn$_2$O$_4$ Spinel의 습식합성가 분말 특성 (Wet Chemical Preparation of Li-rich LiMn$_2$O$_4$ Spinel by Oxalate Precipitation)

  • 이병우;김세호
    • 한국세라믹학회지
    • /
    • 제36권7호
    • /
    • pp.698-704
    • /
    • 1999
  • Li rich Li1+xMn2-xO4(x=0.07) spinel powders were prepared by an oxalate precipitation of wet chemical methods at temperature lower than $600^{\circ}C$. The FTIR results showed that the powders prepared at $600^{\circ}C$ had high degree of crystal quality comparing with the spinel powders prepared by solid state reaction at 75$0^{\circ}C$ which was the lowest synthesis temperature of the solid state reaction method. The particle size of powders prepared by the oxalate precipitation at $600^{\circ}C$ was smaller than 0.2${\mu}{\textrm}{m}$ and the specific surface area was 11.01 m2/g A heat treatment over 90$0^{\circ}C$ formed second phase in the precipitates. It was shown that there were phase transitions at temperatures. T1,T2 and T2. The transitions involved weight loss and gain during heating and cooling. The low temperature synthesis below $600^{\circ}C$ avoided the second phase formation and the prepared powders showed improved compositional and physical properties for secondary lithium battery applications.

  • PDF

습식반응에 의한 $PbTiO_3$ 분말제조에 관한 연구 (Chemical Preparation of $PbTiO_3$ Powder from Aqueous Solution)

  • 이경희;이병하;고영래
    • 한국세라믹학회지
    • /
    • 제22권2호
    • /
    • pp.39-43
    • /
    • 1985
  • This study presents the results of an overall effort to detemine the applicability of the chemical wet process informing lead titanate electronic ceramics. Although pure lead titanate has not proven to be an important technological materials when prepared via conventional processing procedures this work is interesting as a study of chemical wet processing and a way of preparing pbTiO3 for study. The result obtained from this experiment were as follows ; Optimum synthesis condition which synthesize PbTiO3 by chemical wet process was obtained by firing at 50$0^{\circ}C$ after mixing $Pb(OH)_2$- gel and $Ti(OH)_4$ -gel at 7$0^{\circ}C$ for 4 hours.

  • PDF

습식환원법에서 NaBH4환원제를 이용한 Ag분말의 제조 (Preparation of Ag Powder by Wet Reduction Method using NaBH4 Reducing Agent)

  • 원창환;이혁희
    • 한국분말재료학회지
    • /
    • 제13권4호
    • /
    • pp.278-284
    • /
    • 2006
  • Spherical Ag powder was prepared in the system of $AgNO_3\;and\;NaBH_4$ by wet chemical reduction method. The size of Ag powder was increased as the reaction temperature and the concentration of reducing agent was decreased in the constant concentration of dispersion agent. Optimum conditions of producing Ag powder having $1.39{\mu}m$ of D50 was 1M of $AgNO_3$, 0.5M of $NaBH_4$, 1.5g of Gelatine in the room temperature.

습식화학 방법에 의한 안정화된 $ZrO_2$의 제조 및 특성에 대한 연구 (Preparation and Characterization of Stabilized $ZrO_2$ by Wet Chemical Methods)

  • 전승범;변수일
    • 한국세라믹학회지
    • /
    • 제16권3호
    • /
    • pp.155-163
    • /
    • 1979
  • This study was to explore the characteristics of 6 mole% CaO stabilized $ZrO_2$ prepared by wet chemical methods. The results of the experiments were as follows: 1. The powder calcined at 1000$^{\circ}$-110$0^{\circ}C$ was partly agglomerated. The morphology of agglomerate was spherical of 0.5-1$\mu{m}$ in size for Hot Petroleum Drying Method, chain-like of 1-2$\mu{m}$ for Freeze Drying Method, and irreqular of 2-3$\mu{m}$ for Coprecipitation Method. 2. Optimum calcining conditions for powder prepared by wet chemical methods were found: 110$0^{\circ}C$, 2h in air for Hot Petroleum Drying Method and Freeze Drying Method, and 100$0^{\circ}C$, 2h in air for Coprecipitation Method. 3. When specimen was calcined at 1000$^{\circ}$-110$0^{\circ}C$ in air for 2h and then sintered at 1$600^{\circ}C$ in air for 4h, the specimens prepared by wet chemical methods showed a high sintered density (94% of theoretical density) and a low open porosity (<0.8%); however, the sintered density of the specimen prepared by Oxide Wet Mixing Method was 90%. 4. The amount of cubic phase of sintered body prepared by wet chemical methods was observed to be higher than the one prepared by Oxide Wet Mixing Method. 5. It was found that Hot petroleum Drying Method, Freeze Drying Method and Coprecipitation Method were nearly the same in respect of the results of stabilization grade and sintered density of CaO-stabilized $ZrO_2$.

  • PDF

Synthesis, Characterization and Application of Poly(4-vinylpyridine)-Supported Brønsted Acid as Reusable Catalyst for Acetylation Reaction

  • Borah, Kalyan Jyoti;Dutta, Papia;Borah, Ruli
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권1호
    • /
    • pp.225-228
    • /
    • 2011
  • Poly(4-vinylpyridine)-supported $Br{\phi}nsted$ acids (P4VP-HX) were prepared by wet impregnation technique. These supported acids were found as efficient heterogeneous green catalysts for acetylation of alcohol, amine and phenol with different catalytic activities. The wide application of P4VP-HX as reusable solid acid catalyst in organic reactions is possible because of its simple preparation and handling, stability, simple work up procedure.

습식법에 의한 고투자율 Mn-Zn Ferrite의 제조에 관한 연구 (Preparation of High Permeability Mn-Zn Ferrites by the Wet Method)

  • 이경희;이병하;허원도;황우연
    • 한국세라믹학회지
    • /
    • 제31권1호
    • /
    • pp.55-61
    • /
    • 1994
  • Mn-Zn ferrite powder was obtained by wet method that was to be coprecipitated the metal ions of Fe2+, Mn2+ and Zn2+ with alkali solution. The target composition of the ferrite powder was 52 mol% Fe2O3, 24 mol% MnO, and 24 mol% ZnO, that was based on the region of high permeability. And the other ferrite powder was prepared by the dry method that was to be mixed the metal oxides as the above chemical composition. The wet method was compared with dry method for the powder properties and the electromagnetic characteristics of sintered cores. The synthesized powder by wet method was smaller particle size, narrower particle distribution, and higher purity than that of dry method. The initial permeability of sintered sample prepared by the wet method was 14000~28000, on the other side, 9000~15500 in case of the dry method.

  • PDF

Porous Silica Particles As Chromatographic Separation Media: A Review

  • Cheong, Won Jo
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권12호
    • /
    • pp.3465-3474
    • /
    • 2014
  • Porous silica particles are the most prevailing raw material for stationary phases of liquid chromatography. During a long period of time, various methodologies for production of porous silica particles have been proposed, such as crashing and sieving of xerogel, traditional dry or wet process preparation of conventional spherical particles, preparation of hierarchical mesoporous particles by template-mediated pore formation, repeated formation of a thin layer of porous silica upon nonporous silica core (core-shell particles), and formation of specific silica monolith followed by grinding and calcination. Recent developments and applications of useful porous silica particles will be covered in this review. Discussion on sub-$3{\mu}m$ silica particles including nonporous silica particles, carbon or metal oxide clad silica particles, and molecularly imprinted silica particles, will also be included. Next, the individual preparation methods and their feasibilities will be collectively and critically compared and evaluated, being followed by conclusive remarks and future perspectives.

Optimization of Cure System for the ESBR Silica WMB and BR Silica DMB Blend Compounds

  • Yu, Eunho;Kim, Woong;Ryu, Gyeongchan;Ahn, Byungkyu;Mun, Hyunsung;Hwang, Kiwon;Kim, Donghyuk;Kim, Wonho
    • Elastomers and Composites
    • /
    • 제54권2호
    • /
    • pp.97-104
    • /
    • 2019
  • Emulsion styrene-butadiene rubber silica wet masterbatch (ESBR silica WMB) technology was studied to develop highly filled and highly dispersed silica compounds, involving the preparation of a composite by co-coagulating the modified silica and the rubber latex in a liquid phase. Previous studies have shown that when manufacturing ESBR silica WMB/Butadiene silica dry masterbatch (BR silica DMB) blend compounds, preparing BR silica dry masterbatch and mixing it with ESBR silica WMB gave excellent results. However, WMB still has the problem of lower crosslink density due to residual surfactants. Therefore, in this study, tetrabenzylthiuram disulfide (TBzTD) was added instead of diphenyl guanidine (DPG) in the ESBR silica WMB/BR silica DMB blend compounds and sulfur/CBS contents were increased to evaluate their cure characteristics, crosslink densities, mechanical properties, and dynamic viscoelastic properties. TBzTD was found to be more effective in increasing the crosslink density and to produce superior properties compared to DPG. In addition, with increasing sulfur/CBS contents, mechanical properties and rolling resistance were enhanced due to high crosslink density, but the abrasion resistance was not significantly changed because of the toughness.