• Title/Summary/Keyword: Wet Scrubbing

Search Result 30, Processing Time 0.027 seconds

A study on the engineering optimization for the commercial scale coal gasification plant (상용급 석탄가스화플랜트 최적설계에 관한 연구)

  • Kim, Byeong-Hyeon;Min, Jong-Sun;Kim, Jae-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.131.1-131.1
    • /
    • 2010
  • This study was conducted for engineering optimization for the gasification process which is the key factor for success of Taean IGCC gasification plant which has been driven forward under the government support in order to expand to supply new and renewable energy and diminish the burden of the responsibility for the reduction of the green house gas emission. The gasification process consists of coal milling and drying, pressurization and feeding, gasification, quenching and HP syngas cooling, slag removal system, dry flyash removal system, wet scrubbing system, and primary water treatment system. The configuration optimization is essential for the high efficiency and the cost saving. For this purpose, it was designed to have syngas cooler to recover the sensible heat as much as possible from the hot syngas produced from the gasifier which is the dry-feeding and entrained bed slagging type and also applied with the oxygen combustion and the first stage cylindrical upward gas flow. The pressure condition inside of the gasifier is around 40~45Mpg and the temperature condition is up to $1500{\sim}1700^{\circ}C$. It was designed for about 70% out of fly ash to be drained out throughout the quenching water in the bottom part of the gasifier as a type of molten slag flowing down on the membrane wall and finally become a byproduct over the slag removal system. The flyash removal system to capture solid particulates is applied with HPHT ceramic candle filter to stand up against the high pressure and temperature. When it comes to the residual tiny particles after the flyash removal system, wet scurbbing system is applied to finally clean up the solids. The washed-up syngas through the wet scrubber will keep around $130{\sim}135^{\circ}C$, 40~42Mpg and 250 ppmv of hydrochloric acid(HCl) and hydrofluoric acid(HF) at maximum and it is turned over to the gas treatment system for removing toxic gases out of the syngas to comply with the conditions requested from the gas turbine. The result of this study will be utilized to the detailed engineering, procurement and manufacturing of equipments, and construction for the Taean IGCC plant and furthermore it is the baseline technology applicable for the poly-generation such as coal gasification(SNG) and liquefaction(CTL) to reinforce national energy security and create new business models.

  • PDF

A Study of Co-Combustion Characteristics of North Korean Anthracite and Bituminous Coal in 2 MWe CFBC Power Plant (2 MWe 순환유동층 발전 플랜트에서 유연탄과 북한 무연탄 혼소시험 특성 연구)

  • Han, Keun-hee;Hyun, Ju-soo;Choi, Won-kil;Lee, Jong-seop
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.580-586
    • /
    • 2009
  • In this study, co-combustion characteristics of Chinese bituminous coal and North Korean anthracite were investigated using a 2 MWe scale circulating fluidized bed power plant. At first, the combustion efficiency of bituminous coal of China and Australia as a function of excess air ratio and temperature were observed. The results showed that the combustion efficiency was influenced by particle size and volatile content of coal, the combustion efficiency of Chinese bituminous coal was over 99.5%. The unburned carbon particles from fly ash and bottom ash were a content 5~7% and 0.3%, respectively. The combustion efficiency with the mixture ratio 20% of bituminous coal and anthracite decreased over 5% because of the increase of entrained particles by a small average particle size of anthracite in the combustor. However, the outlet concentration of $SO_2$ and $NO_x$ was not changed remarkably. The concentrations of the typical air pollutants such as $NO_x$ and $SO_2$ were 200~250 ppm($O_2$ 6%), 100~320 ppm($O_2$ 6%) respectively. The outlet concentration of $NO_x$ was decreased to 30~65% with $NH_3$ supplying rate of 2~13 l/min in SCR process. The $SO_x$ removal efficiency was up to 70% by in-furnace desulfurization using limestone with Ca/S molar of approximately 6.5. With wet scrubbing using $Mg(OH)_2$ as absorbent, the $SO_x$ removal efficiency reached 100% under near pH 5.0 of scrubbing liquid.

Removal of Nano-scaled Fluorescence Particles on Wafer by the Femtosecond Laser Shockwave (펨토초레이저 충격파에 의한 형광 나노입자 제거)

  • Park, Jung-Kyu;Cho, Sung-Hak;Kim, Jae-Gu;Chang, Won-Seok;Whang, Kyung-Hyun;Yoo, Byung-Heon;Kim, Kwang-Ryul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.150-156
    • /
    • 2009
  • The removal of tiny particles adhered to surfaces is one of the crucial prerequisite for a further increase in IC fabrication, large area displays and for the process in nanotechnology. Various cleaning techniques (wet chemical cleaning, scrubbing, pressurized jets and ultrasonic processes) currently used to clean critical surfaces are limited to removal of micrometer-sized particles. Therefore the removal of sub-micron sized particles from silicon wafers is of great interest. For this purpose various cleaning methods are currently under investigation. In this paper, we report on experiments on the cleaning effect of 100nm sized fluorescence particles on silicon wafer using the plasma shockwave occurred by femtosecond laser. The plasma shockwave is main effect of femtosecond laser cleaning to remove particles. The removal efficiency was dependent on the gap distance between laser focus and surface but in some case surface was damaged by excessive laser intensity. These experiments demonstrate the feasibility of femtosecond laser cleaning using 100nm size fluorescence particles on wafer.

Removal of Tar from Biomass Gasification Process (Biomass Gasification 공정에서 발생하는 Tar 제거연구)

  • Kim, Ju-Hoe;Jo, Young-Min;Kim, Jong-Su;Kim, Sang-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.552-561
    • /
    • 2018
  • Biomass, a carbon-neutral resource, is an alternative energy source for exhaustion of fossil fuel and environmental problems. Most of energy production systems using biomass operate with a thermal chemical conversion method. Amongst them, gasification generates syngas and applies to boilers or engines for the production of heat and electricity. However, Tar could be formed during the production of syngas and it is condensed at low temperature which may cause to clog the pipelines and combustion chamber, ultimately resulting in decrease of process efficiency. Thus this work utilized water and oily materials such as soybean oil, waste cooking oil and mineral oil for scrubbing liquid. The removal efficiency of Tar appeared 97%, 70%, 63% and 30% for soybean oil, waste cooking oil, mineral oil and water respectively.

Characteristics of Hazardous Air Pollutant Emissions from Waste Incinerators (폐기물소각시설의 유해대기오염물질 배출특성 연구)

  • Park, J.M.;Lee, S.B.;Kang, J.G.;Kim, J.P.;Choi, E.S.;Hwang, W.G.;Kwon, O.S.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.183-190
    • /
    • 2007
  • In this study, we have investigated waste incinerators which are one of the major HAPs emission sources. In order to obtain more reliable HAPs emission data from waste incinerators, direct sampling for the possible pollutants from the stack was carried out and the analysis was performed. The purpose of study was to understand the emission status from waste incinerators and recognize the problems and finally to set up a strategy to reduce the HAPs emissions from waste incinerators. The emission concentrations of 8 species of heavy metals and 16 species of PAHs have been analyzed for the first time in Korea. Not only the emission characteristics of HAPs from waste incinerators were identified, but also the analysis of reduction efficiencies for control devices such as BF and wet scrubbing systems was carried out.

Studies on the aqueous ammonia alternatives in the wet scrubbing method (습식 세정법에서 암모니아 대체물질에 관한 연구)

  • Kim, Jae Gang;Lee, Ju-Yeol;Park, Byung Hyun;Choi, Jin Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.110-117
    • /
    • 2016
  • In the existing research, the ammonia aqueous solution was used in order to remove the Nitrogen dioxide using the scrubber. However, ammonia is poisonous and stench is extreme. So, the system application follows the difficulty. Experiments were conducted to find a substitute material ammonia. The sodium hydroxide(NaOH), sodium thiosulfate ($Na_2S_2O_3$), and urea were used with the substitute substance. The experimental condition proceeded as the optimum conditions in the existing ammonia use. The experimental result NaOH and $Na_2S_2O_3$ was available. NaOH showed the efficiency which is the highest in 2.5%. And $Na_2S_2O_3$ showed the efficiency which is the highest in 5.0%. The efficiency was not fixed and the urea was inappropriate with the substitute substance.

Development of Mobile Vortex Wet Scrubber and Evaluation of Gas Removal Efficiency (기체상 유해화학물질 제거를 위한 이동형 와류식 세정장치 개발 및 가스 제거효율 분석)

  • Kwak, Ji Hyun;Hwang, Seung-Ryul;Lee, Yeon-Hee;Kim, Jae-Young;Song, Ki Bong;Kim, Kyun;Kang, Jae Eun;Lee, Sang Jae;Jeon, Junho;Lee, Jin Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.2
    • /
    • pp.134-138
    • /
    • 2015
  • BACKGROUND: In recent years, several researchers have focused on odour control methods to remove the harmful chemicals from chemical accidents and incidents. The present work deals with the system development of the hazardous. METHODS AND RESULTS: For on-site removal of hazardous gaseous materials from chemical accidents, mobile vortex wet scrubber was designed with water vortex process to absorb the gas into the water. The efficiency of the mobile vortex wet scrubber was evaluated using water spray and 25% ammonia solution. The inlet air velocity (gas flow rate) was according to the damper angle installed within the hood and with increase of gas flow rate, consequently the absorption efficiency was markedly decreased. In particular, when 25% ammonia solution was exposed to the hood inlet for 30 min, the water pH within the scrubber was changed from 7 to 12. Interestingly, although the removal efficiency of ammonia gas exhibited approximately 80% for 5 min, its efficiency in 10 min showed the greatest decrease with 18%. Therefore, our results suggest that the ammonia gas may be absorbed with the driving force of scrubbing water in water vortex process of this scrubber. CONCLUSION: When chemical accidents are occurred, the designed compact scrubber may be utilized as effective tool regarding removal of ammonia gas and other volatile organic compounds in the scene of an accident.

Thermal-hydraulic behaviors of a wet scrubber filtered containment venting system in 1000 MWe PWR with two venting strategies for long-term operation

  • Dong, Shichang;Zhou, Xiafeng;Yang, Jun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1396-1408
    • /
    • 2020
  • Filtered containment venting system (FCVS) is one of the severe accident mitigation systems designed to release containment pressurization to maintain its integrity. The thermal-hydraulic behaviors in FCVSs are important since they affect the operation characteristics of the FCVS. In this study, a representative FCVS was modeled by RELAP5/Mod3.3 code, and the Station BlackOut (SBO) was chosen as an accident scenario. The thermal-hydraulic behaviors of an FCVS during long-term operation with two venting strategies (open-and-close strategy, open-and-non-close strategy) and the sensitivity analysis of important parameters were investigated. The results show that the FCVS can operate up to 250 h with a periodic open-and-close strategy during an SBO. Under the combined effects of steam condensation and water evaporation, the solution inventory in the FCVS increases during the venting phase and decreases during the intermission phase, showing a periodic pattern. Under this condition, the appropriate initial water level is 3-4 m; however, it should be adjusted according to the environment temperature. The FCVS can accommodate a decay heat power of 150-260 kW and may need to feed water for a higher decay heat power or drain water for a lower decay heat power during the late phase. The FCVS can function within an opening pressure range from 450 kPa to 500 kPa and a closing pressure range between 250 kPa and 350 kPa. When the open-and-non-close strategy is adopted, the solution inventory increases quickly in the early venting phase due to steam condensation and then decreases gradually due to the evaporation of water; drying-up may occur in the late venting phase. Decreasing the venting pipe diameter and increasing the initial water level can mitigate the evaporation of the scrubbing solution. These results are expected to provide useful references for the design and engineering application of FCVSs.

Global Trend of CO2 Capture Technology Development (이산화탄소 포집기술 국외 기술개발 동향)

  • Baek, Jeom-In
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.143-165
    • /
    • 2016
  • The amount of greenhouse gas emission reduction based on INDCs (Intended Nationally Determined Contributions) submitted to UN by each party is not sufficient to achieve the Paris Agreement's aim to "hold the increase in the global average temperature to well below $2^{\circ}C$ above pre-industrial levels and to pursue efforts to limit the temperature increase to $1.5^{\circ}C$" which was determined in the $21^{st}$ Conference of the Parties to the UNFCCC (COP 21). Accordingly, the emission reduction target of each party will be revised for the $2^{\circ}C$ goal. Among the several options to reduce the carbon emission, CCS (Carbon Capture and Storage) is a key option to curb $CO_2$ emissions from large emission sources such as fossil-based power plants, cement plants, and steel production plants. A large scale CCS demonstration projects utilizing $1^{st}$ generation $CO_2$ capture technologies are under way around the world. It is anticipated, however, that the deployment of those $1^{st}$ generation $CO_2$ capture technologies in great numbers without government support will be difficult due to the high capture cost and considerable increase of cost of electricity. To reduce the carbon capture cost, $2^{nd}$ and $3^{rd}$ generation technologies are under development in a pilot or a bench scale. In this paper, current status of large scale CCS demonstration projects and the $2^{nd}$ and $3^{rd}$ generation capture technologies are summarized. Novel capture technologies on wet scrubbing, dry sorbent, and oxygen combustion are explained in detail for all capture areas: post-combustion capture, pre-combustion capture, and new combustion technologies.

Optimization of Electrolytic Oxidant OCl- Production for Malodorous VOCs Removal (악취성 VOCs 제거를 위한 전해 산화제 OCl-의 생산 최적화)

  • Yang, Woo Young;Lee, Tae Ho;Ryu, Hee Wook
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.152-159
    • /
    • 2021
  • Volatile organic compounds (VOCs) occur in indoor and outdoor industrial and urban areas and cause environmental problems. Malodorous VOCs, along with aesthetic discomfort, can have a serious effect on the human body. Compared with the existing method of reducing malodorous VOCs, a wet scrubbing method using an electrolytic oxidant has the advantage of reducing pollutants and regenerating oxidants. This study investigated the optimal conditions for producing OCl-, a chlorine-oxidant. Experiments were conducted by changing the type of anode and cathode electrode, the type of electrolyte, the concentration of electrolytes, and the current density. With Ti/IrO2 as the anode electrode and Ti as the cathode electrode, OClproduction was highest and most stable. Although OCl- production was similar with the use of KCl or NaCl, NaCl is preferable because it is cheap and easy to obtain. The effect of NaCl concentration and current density was examined, and the OCl- production rate and concentration were highest at 0.75 M NaCl and 0.03 A cm-2. However, considering the cost of electric power, OCl- production under the conditions of 1.00 M NaCl and 0.01 A cm-2 was most effective among the conditions examined. It is desirable to produce OCl- by adjusting the current density in accordance with the concentration and characteristics of pollutants.