Browse > Article
http://dx.doi.org/10.7464/ksct.2021.27.2.152

Optimization of Electrolytic Oxidant OCl- Production for Malodorous VOCs Removal  

Yang, Woo Young (Department of Chemical Engineering, Soongsil University)
Lee, Tae Ho (Department of Chemical Engineering, Soongsil University)
Ryu, Hee Wook (Department of Chemical Engineering, Soongsil University)
Publication Information
Clean Technology / v.27, no.2, 2021 , pp. 152-159 More about this Journal
Abstract
Volatile organic compounds (VOCs) occur in indoor and outdoor industrial and urban areas and cause environmental problems. Malodorous VOCs, along with aesthetic discomfort, can have a serious effect on the human body. Compared with the existing method of reducing malodorous VOCs, a wet scrubbing method using an electrolytic oxidant has the advantage of reducing pollutants and regenerating oxidants. This study investigated the optimal conditions for producing OCl-, a chlorine-oxidant. Experiments were conducted by changing the type of anode and cathode electrode, the type of electrolyte, the concentration of electrolytes, and the current density. With Ti/IrO2 as the anode electrode and Ti as the cathode electrode, OClproduction was highest and most stable. Although OCl- production was similar with the use of KCl or NaCl, NaCl is preferable because it is cheap and easy to obtain. The effect of NaCl concentration and current density was examined, and the OCl- production rate and concentration were highest at 0.75 M NaCl and 0.03 A cm-2. However, considering the cost of electric power, OCl- production under the conditions of 1.00 M NaCl and 0.01 A cm-2 was most effective among the conditions examined. It is desirable to produce OCl- by adjusting the current density in accordance with the concentration and characteristics of pollutants.
Keywords
Malodorous VOCs; $OCl^-$; Electrolysis; Electric power;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Jeong, J.-S., Kim, C.-S., and Yoon, J.-Y., "The Effect of Electrode Material on the Generation of Oxidants and Microbial Inactivation in the Electrochemical Disinfection Processes," Water Res., 43(4), 895-901 (2009).   DOI
2 Le Luu, T., Kim, J.-Y., and Yoon, J.-Y., "Physicochemical Properties of RuO2 and IrO2 Electrodes Affecting Chlorine Evolutions," J. Ind. Eng. Chem., 21, 400-404 (2015).   DOI
3 Annesi - Maesano, I., Baiz, N., Banerjee, S., Rudnai, P., Rive, S., and the S. G., "Indoor Air Quality and Sources in Schools and Related Health Effects," Environ. Health, Part B, 16(8), 491-550 (2013).   DOI
4 Zhang, X., Gao, B., Creamer, A. E., Cao, C., and Li, Y., "Adsorption of VOCs onto Engineered Carbon Materials: A review," J. Hazard. Mater., 338, 102-123 (2017).   DOI
5 Kim, J.-Y., Kim, C.-S., Kim, S.-H., and Yoon, J.-Y., "A Review of Chlorine Evolution Mechanism on Dimensionally Stable Anode (DSA®)," Korean Chem. Eng. Res., 53(5), 531-539 (2015).   DOI
6 Kraft, A., "Electrochemical Water Disinfection: a Short Review," Platinum Met. Rev., 52(3), 177-185 (2008).   DOI
7 Jurvelin, J., "Personal Exposures to Volatile Organic Compounds and Carbonyls: Relationships to Microenvironment Concentrations and Analysis of Sources," Helsinki, Finland, National Public Health Institute: Department of Environmental Health Laboratory of Air Hygiene, (2003).
8 Jo, W. K., and Yang, C. H., "Granular-activated Carbon Adsorption Followed by Annular-type Photocatalytic System for Control of Indoor Aromatic Compounds," Sep. Purif. Technol., 66(3), 438-442 (2009).   DOI
9 Huang, B., Lei, C., Wei, C., and Zeng, G., "Chlorinated Volatile Organic Compounds (Cl-VOCs) in Environment - Sources, Potential Human Health Impacts, and Current Remediation Technologies," Environ. Int., 71, 118-138 (2014).   DOI
10 Zhang, J., Zhang, J., Chen, Q., and Yang, X., "A Critical Review on Studies of Volatile Organic Compound (VOC) Sorption by Building Materials (RP-1097)," TASHRAE Transactions, 108(1), 162-174 (2001).
11 Luengas, A., Barona, A., Hort, C., Gallastegui, G., Platel, V., and Elias., "A Review of Indoor Air Treatment Technologies," Rev. Environ. Sci. Bio/Technol., 14(3), 499-522 (2015).   DOI
12 Park, M.-J., Lee, T.-S., and Kang, M., "Characteristics of Chlorine-Based Oxidant Production on Insoluble Electrode," KSWST Jour. Wat. Treat, 25, 27-34 (2017).   DOI
13 Yoa, S.-J., and Kim, J.-Y., "Collection Characteristics of Wet-type Multi-Layered and Multi-Staged Porous Plate System," J. of Power Syst. Eng., 18(3), 42-50 (2014).
14 Jeong, M. S., Seo, J. M., Park, J. H., and Park, J. U., "Development of the Pulse Air Jet Bag Filter Cost Reduction Device," Proceedings of the Korean Environmental Sciences Society Conference, 44-46 (2006).
15 Furuya, N., and Aikawa, H., "Comparative Study of Oxygen Cathodes Loaded With Ag and Pt Catalysts in Chlor-alkali Membrane Cells," Electrochim. Acta, 45(25-26), 4251-4256 (2000).   DOI
16 Kim, M.-H., Jeong, J.-W., and Cho, Y.-J., "Comparison of Characteristics on Electrolyzed Water Manufactured by Various Electrolytic Factors," Korean J. Food Sci. Technol., 36(3), 416-422 (2004).
17 Lu, Y., Liu, J., Lu, B., Jiang, A., and Wan, C., "Study on the Removal of Indoor VOCs Using Biotechnology," J. Hazard. Mater., 182(1-3), 204-209 (2010).   DOI
18 Yoon, S. M., Kim, J. Y., Park, K. Y., Yoon, S. K., Kil, I. S., Park, H. J., and Rhee, Y. W., "Investigation on Desorption Reaction and Heating Value of Used Activated Carbons Collected from VOC Adsorption Towers," Clean Tech., 16(1), 33-38 (2010).
19 Catanho, M., Malpass, G. R. P., and Motheo, A. J., "Photoelectrochemical Treatment of the Dye Reactive Red 198 using DSA® Electrodes," Appl. Catal., B, 62(3-4), 193-200 (2006).   DOI
20 Czarnetzki, L. R., and Janssen, L. J. J., "Formation of Hypochlorite, Chlorate and Oxygen during NaCl Electrolysis from Alkaline Solutions at an RuO2/TiO2 anode," J. Appl. Electrochem., 22, 315-324 (1992).   DOI
21 Lee, T. H., and Ryu, H. W., "Characteristics of Odorous VOCs Removal by Using Electrolytic Oxidant," J. Odor Indoor Environ., 17(4), 381-388 (2018).   DOI
22 Lee, J.-C., and Park, D.-W., "Generation of Free Chlorine Using RuO2 / Ti Electrode with Various Amount of Ru," J. Korean Soc. Environ. Eng., 34(11), 715-719 (2012).   DOI
23 Park, Y. S., and Ahn, K. H., "Biological Treatment of Textile Wastewater by Anaerobic-Aerobic Reactor System," J. Environ. Health Sci., 27(3), 11-20 (2001).
24 Ponzano, G. P., "Disinfection by Sodium Hypochlorite: Dialysis Applications," Karger Publishers, 154, 7-23 (2007).
25 Wei, W., Cheng, S., Li, G., Wang, G., and Wang, H., "Characteristics of Ozone and Ozone Precursors (VOCs and NOx) around a Petroleum Refinery in Beijing, China," J. Environ. Sci., 26(2), 332-342 (2014).   DOI
26 Shin, H. M., McKone, T. E., and Bennett, D. H., "Contribution of Low Vapor Pressure-Volatile Organic Compounds (LVP-VOCs) from Consumer Products to Ozone Formation in Urban Atmospheres," Atmos. Environ., 108, 98-106 (2015).   DOI
27 Kraft, A., Stadelmann, M., Blaschke, M., Kreysig, D., Sandt, B., Schroder, F., and Rennau, J., "Electrochemical Water Disinfection Part I: Hypochlorite Production from Very Dilute Chloride Solutions," J. Appl. Electrochem., 29(7), 859-866 (1999).   DOI
28 Zhang, L. N., Lang, Z. L., Wang, Y. H., Tan, H. Q., Zang, H. Y., Kang, Z. H., and Li, Y. G., "Cable-like Ru/WNO@ C Nanowires for Simultaneous High-efficiency Hydrogen Evolution and Low-Energy Consumption Chlor-alkali Electrolysis," Energy Environ. Sci., 12(8), 2569-2580 (2019).   DOI
29 Jeong, J.-W., Kim, J.-H., Kim, B.-S., and Jeong, S.-W., "Characteristics of Electrolyzed Water Manufactured from Various Electrolytic Diaphragm and Electrolyte," Korean J. Food Preserv., 10(1), 99-105 (2003).
30 Kettle, A. J., Albrett, A. M., Chapman, A. L., Dickerhof, N., Forbes, L. V., Khalilova, I., and Turner, R., "Measuring Chlorine Bleach in Biology and Medicine," Biochim. Biophys. Acta Gen. Subj., 1840(2), 781-793 (2014).   DOI
31 Kwon, T. O., Park, B. B., Roh, H. C., and Moon, I. S., "Electrochemical Generation of Chlorine Dioxide from Sodium Chlorite Using Un-Divided Electrochemical Cell: Effect of Anode Materials," Korean Chem. Eng. Res., 48(2), 275-282 (2010).
32 Wang, Z. B., Hu, H. X., and Zheng, Y. G., "Synergistic Effects of Fluoride and Chloride on General Corrosion Behavior of AISI 316 Stainless Steel and Pure Titanium in H2SO4 Solutions," Corros. Sci., 130, 203-217 (2018).   DOI
33 Jang, S. H., Kim, G. E., Shin, H. M., Song, Y. C., Lee, W. K., and Youn, Y. N., "Study on Removal of Ammonia Nitrogen from Metal Working Fluids using Aluminum Electrode," J. Korea Soc. Waste Manag., 33(7), 710-715 (2016).   DOI
34 Endoh, E., Otouma, H., and Morimoto, T., "Advanced Low Hydrogen Overvoltage Cathode for Chlor-alkali Electrolysis Cells," Int. J. Hydrog. Energy, 13(4), 207-213 (1988).   DOI
35 Hong, J. H., Keum, D. M., Han, D. S., Park, I. B., Chun, M. S., Ko, K. W., and Lee, J. M., "Mechanical Characteristics of Stainless Steel under Low Temperature Environment," J. Soc. Nav. Archit. Korea, 45(5), 530-537 (2008).   DOI