• Title/Summary/Keyword: Western Ginseng

Search Result 248, Processing Time 0.022 seconds

Panax ginseng Meyer prevents radiation-induced liver injury via modulation of oxidative stress and apoptosis

  • Kim, Hyeong-Geug;Jang, Seong-Soon;Lee, Jin-Seok;Kim, Hyo-Seon;Son, Chang-Gue
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.159-168
    • /
    • 2017
  • Background: Radiotherapy is one of the most important modalities in cancer treatment; however, normal tissue damage is a serious concern. Drug development for the protection or reduction of normal tissue damage is therefore a clinical issue. Herein, we evaluated the protective properties of Panax ginseng Meyer and its corresponding mechanisms. Methods: C56BL/6 mice were orally pretreated with P. ginseng water extract (PGE; 25 mg/kg, 50 mg/kg, or 100 mg/kg) or intraperitoneally injected melatonin (20 mg/kg) for 4 d consecutively, then exposed to 15-Gy X-ray radiation 1 h after the last administration. After 10 d of irradiation, the biological properties of hematoxicity, fat accumulation, histopathology, oxidative stress, antioxidant activity, pro-inflammatory cytokines, and apoptosis signals were examined in the hepatic tissue. Results: The irradiation markedly induced myelosuppression as determined by hematological analysis of the peripheral blood. Steatohepatitis was induced by X-ray irradiations, whereas pretreatment with PGE significantly attenuated it. Oxidative stress was drastically increased, whereas antioxidant components were depleted by irradiation. Irradiation also notably increased serum liver enzymes and hepatic protein levels of pro-inflammatory cytokines. Those alterations were markedly normalized by pretreatment with PGE. The degree of irradiation-induced hepatic tissue apoptosis was also attenuated by pretreatment with PGE, which was evidenced by a terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick-end labeling assay, western blotting, and gene expressions analysis, particularly of apoptotic molecules. Conclusion: We suggest that PGE could be applicable for use against radiation-induced liver injury, and its corresponding mechanisms involve the modulation of oxidative stress, inflammatory reactions, and apoptosis.

Glucocorticoid Receptor Induced Down Regulation of Metalloproteinase-9 (bfMP-9) by Ginseng Components, Panaxadiol (PD) and Panaxatriol (PT), Contributes to Inhibition of the Invasive Capacity of HTl080 Human Fibrosarcoma Cells

  • Park, Moon-Taek;Cha, Hee-Jae;Jeong, Joo-Won;Kim, Shin-Il;Kim, Kyu-Won
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.224-230
    • /
    • 1998
  • This study showed the anti-invasive activity of ginseng components, panaxadiol (PD) and panamatrlol (PT) on the highly metastatic HT1080 human flbrosarcoma cell line. PD and PT reduced tumor cell invasion through a reconstitute basement membrane in the transwell chamber. A significant down regulation of MMP-9 by PD and PT was detected by northern blot analysis. However, MMP-2 was constantly expressed. Quantitative gelatin based zymography confirmed a marked reduced expression of MMP-9 but not MMP-2 in the treatment of PD and PT. Since the chemical structures of PD and PT are very similar to that of dexamethasone, a synthetic glucocorticoid, it was investigated whether PD and PT act through GR. Western blot analysis and immunocytochemistry showed that PD and PT increased the GR fraction in the nucleus. These results suggest that ursolic acid may induce repression of MMP-9 by stimulating the nuclear translocation of GR and hence inhibiting the activity of AP-1 to TPA-responsible element of MMP-9 promoter region. In conclusion, we suggest that CR-induced down-regulation of MMP-9 by PD and PT contributes to reduce the invasive capacity of HT 1080 cells.

  • PDF

Korean Red Ginseng protects dopaminergic neurons by suppressing the cleavage of p35 to p25 in a Parkinson's disease mouse model

  • Jun, Ye Lee;Bae, Chang-Hwan;Kim, Dongsoo;Koo, Sungtae;Kim, Seungtae
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.148-154
    • /
    • 2015
  • Background: Ginseng is known to have antiapoptotic, anti-inflammatory, and antioxidant effects. The present study investigated a possible role of Korean Red Ginseng (KRG) in suppressing dopaminergic neuronal cell death and the cleavage of p35 to p25 in the substantia nigra (SN) and striatum (ST) using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease mouse model. Methods: Ten-week-old male C57BL/6 mice were injected intraperitoneally with 30 mg/kg of MPTP at 24-h intervals for 5 d, and then administered KRG (1 mg/kg, 10 mg/kg, or 100 mg/kg) once a day for 12 consecutive days from the first injection. Pole tests were performed to assess the motor function of the mice, dopaminergic neuronal survival in the SN and ST was evaluated using tyrosine hydroxylase-immunohistochemistry, and the expressions of cyclin-dependent kinase 5 (Cdk5), p35, and p25 in the SN and ST were measured using Western blotting. Results: MPTP administration caused behavioral impairment, dopaminergic neuronal death, increased Cdk5 and p25 expression, and decreased p35 expression in the nigrostriatal system of mice, whereas KRG dose-dependently alleviated these MPTP-induced changes. Conclusion: These results indicate that KRG can inhibit MPTP-induced dopaminergic neuronal death and suppress the cleavage of p35 to p25 in the SN and the ST, suggesting a possible role for KRG in the treatment of Parkinson's disease.

Effect of Korean Red Ginseng Extract on Cell Death Responses in Peroxynitrite-Treated Keratinocytes

  • Kim, Hyoung-Do;Ha, Se-Eun;Kang, Jea-Ran;Park, Jong-Kun
    • Journal of Ginseng Research
    • /
    • v.34 no.3
    • /
    • pp.205-211
    • /
    • 2010
  • Korean red ginseng (KRG) has been used worldwide as a traditional medicine for the treatment of various diseases, including cancer. In this study, we determined the effect of KRG on the responses of HaCaT cells to peroxynitrite ($ONOO^-$). Cells has been used worldwide as a traditional medicine for the treatment of various diseases, including cancer. In this study, we determined the effect of KRG on the responses of HaCaT cells to peroxynitrite ($ONOO^-$). Cells treated with $ONOO^-$ (2 mM) prior to incubation with control medium for 12 hours displayed reduced viability, as determined using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay (viability about 48% of that of non-treated control cells). When KRG was added to the post-incubation medium, the negative effects of $ONOO^-$ on cell viability were significantly reduced. Reverse transcription-polymerase chain reaction analysis indicated that KRG alone did not significantly alter p53 or "growth arrest and DNA damage" (GADD)45 mRNA levels. However, the addition of KRG to the post-incubation medium significantly and dose-dependently reduced levels of p53 and GADD45 mRNA in $ONOO^-$-treated cells. Western blot analyses revealed that incubation with KRG decreased p53 and GADD45 protein levels in $ONOO^-$-treated cells, relative to those in cells incubated with control medium. Collectively, these results suggest that Korean red ginseng extract protects cells against $ONOO^-$-induced genotoxicity by increasing cell viability through modulating the expression of p53 signaling intermediates.

Korean Red Ginseng extract reduces hypoxia-induced epithelial-mesenchymal transition by repressing NF-κB and ERK1/2 pathways in colon cancer

  • Kim, Eui Joo;Kwon, Kwang An;Lee, Young Eun;Kim, Ju Hyun;Kim, Se-Hee;Kim, Jung Ho
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.288-297
    • /
    • 2018
  • Background: The incidence of colorectal cancer (CRC) is increasing, with metastasis of newly diagnosed CRC reported in a large proportion of patients. However, the effect of Korean Red Ginseng extracts (KRGE) on epithelial to mesenchymal transition (EMT) in CRC is unknown. Therefore, we examined the mechanisms by which KRGE regulates EMT of CRC in hypoxic conditions. Methods: Human CRC cell lines HT29 and HCT116 were incubated under hypoxic (1% oxygen) and normoxic (21% oxygen) conditions. Western blot analysis and real-time PCR were used to evaluate the expression of EMT markers in the presence of KRGE. Furthermore, we performed scratched wound healing, transwell migration, and invasion assays to monitor whether KRGE affects migratory and invasive abilities of CRC cells under hypoxic conditions. Results: KRGE-treated HT29 and HCT116 cells displayed attenuated vascular endothelial growth factor (VEGF) mRNA levels and hypoxia-inducible $factor-1{\alpha}$ ($HIF-1{\alpha}$) protein expression under hypoxic conditions. KRGE repressed Snail, Slug, and Twist mRNA expression and integrin ${\alpha}V{\beta}6$ protein levels. Furthermore, hypoxia-repressed E-cadherin was restored in KRGE-treated cells; KRGE blocked the invasion and migration of colon cancer cells by repressing $NF-{\kappa}B$ and ERK1/2 pathways in hypoxia. Conclusions: KRGE inhibits hypoxia-induced EMT by repressing $NF-{\kappa}B$ and ERK1/2 pathways in colon cancer cells.

Antiaging effects of the mixture of Panax ginseng and Crataegus pinnatifida in human dermal fibroblasts and healthy human skin

  • Hwang, Eunson;Park, Sang-Yong;Yin, Chang Shik;Kim, Hee-Taek;Kim, Yong Min;Yi, Tae Hoo
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.69-77
    • /
    • 2017
  • Background: Human skin undergoes distinct changes throughout the aging process, based on both intrinsic and extrinsic factors. In a process called photoaging, UVB irradiation leads to upregulation of matrix metalloproteinase-1, which then causes collagen degradation and premature aging. Mixtures of medicinal plants have traditionally been used as drugs in oriental medicine. Based on the previously reported antioxidant properties of Panax ginseng Meyer and Crataegus pinnatifida, we hypothesized that the mixture of P. ginseng Meyer and C. pinnatifida (GC) would have protective effects against skin aging. Methods: Anti-aging activity was examined both in human dermal fibroblasts under UVB irradiation by using Western blot analysis and in healthy human skin by examining noninvasive measurements. Results: In vitro studies showed that GC improved procollagen type I expression and diminished matrix metalloproteinase-1 secretion. Based on noninvasive measurements, skin roughness values, including total roughness (R1), maximum roughness (R2), smoothness depth and average roughness (R3), and global photodamage scores were improved by GC application. Moreover, GC ameliorated the high values of smoothness depth (R4), which means that GC reduced loss of skin moisture. Conclusion: These results suggest that GC can prevent aging by inhibiting wrinkle formation and increasing moisture in the human skin.

Inhibition of hypoxia-induced cyclooxygenase-2 by Korean Red Ginseng is dependent on peroxisome proliferator-activated receptor gamma

  • Song, Heewon;Lee, Young Joo
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.240-246
    • /
    • 2017
  • Background: Korean Red Ginseng (KRG) is a traditional herbal medicine made by steaming and drying fresh ginseng. It strengthens the endocrine and immune systems to ameliorate various inflammatory responses. The cyclooxygenase-2 (COX-2)/prostaglandin E2 pathway has important implications for inflammation responses and tumorigenesis. Peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) is a transcription factor that regulates not only adipogenesis and lipid homeostasis, but also angiogenesis and inflammatory responses. Methods: The effects of the KRG on inhibition of hypoxia-induced COX-2 via $PPAR{\gamma}$ in A549 cells were determined by luciferase assay, Western blot, and/or quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The antimigration and invasive effects of KRG were evaluated on A549 cells using migration and matrigel invasion assays. Results and conclusion: We previously reported that hypoxia-induced COX-2 protein and mRNA levels were suppressed by KRG. This study examines the possibility of $PPAR{\gamma}$ as a cellular target of KRG for the suppression of hypoxia-induced COX-2. $PPAR{\gamma}$ protein levels and $PPAR{\gamma}$-responsive element (PPRE)-driven reporter activities were increased by KRG. Reduction of hypoxia-induced COX-2 by KRG was abolished by the $PPAR{\gamma}$ inhibitor GW9662. In addition, the inhibition of $PPAR{\gamma}$ abolished the effect of KRG on hypoxia-induced cell migration and invasion. Discussion: Our results show that KRG inhibition of hypoxia-induced COX-2 expression and cell invasion is dependent on $PPAR{\gamma}$ activation, supporting the therapeutic potential for suppression of inflammation under hypoxia. Further studies are required to demonstrate whether KRG activates directly $PPAR{\gamma}$ and to identify the constituents responsible for this activity.

Ginsenoside Rg3 and Korean Red Ginseng extract epigenetically regulate the tumor-related long noncoding RNAs RFX3-AS1 and STXBP5-AS1

  • Ham, Juyeon;Jeong, Dawoon;Park, Sungbin;Kim, Hyeon Woo;Kim, Heejoo;Kim, Sun Jung
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.625-634
    • /
    • 2019
  • Background: Ginsenoside Rg3, a derivative of steroidal saponins abundant in ginseng, has a range of effects on cancer cells, including anti-cell proliferation and anti-inflammation activity. Here, we investigate two long noncoding RNAs (lncRNAs), STXBP5-AS1 and RFX3-AS1, which are hypomethylated and hypermethylated in the promoter region by Rg3 in MCF-7 cancer cells. Methods: The lncRNAs epigenetically regulated by Rg3 were mined using methylation array analysis. The effect of the lncRNAs on the apoptosis and proliferation of MCF-7 cells was monitored in the presence of Rg3 or Korean Red Ginseng (KRG) extract after deregulating the lncRNAs. The expression of the lncRNAs and their target genes was examined using qPCR and Western blot analysis. The association between the expression of the target genes and the survival rate of breast cancer patients was analyzed using the Kaplan-Meier Plotter platform. Results: STXBP5-AS1 and RFX3-AS1 exhibited anti- and pro-proliferation effects, respectively, in the cancer cells, and the effects of Rg3 and KRG extract on apoptosis and cell proliferation were weakened after deregulating the lncRNAs. Of the genes located close to STXBP5-AS1 and RFX3-AS1 on the chromosome, STXBP5, GRM1, RFX3, and SLC1A1 were regulated by the lncRNAs on the RNA and protein level. Breast cancer patients that exhibited a higher expression of the target genes of the lncRNAs had a higher metastasis-free survival rate. Conclusion: The current study is the first to identify lncRNAs that are regulated by the presence of Rg3 and KRG extract and that subsequently contribute to inhibiting the proliferation of cancer cells.

The non-saponin fraction of Korean Red Ginseng ameliorates sarcopenia by regulating immune homeostasis in 22-26-month-old C57BL/6J mice

  • Oh, Hyun-Ji;Jin, Heegu;Lee, Boo-Yong
    • Journal of Ginseng Research
    • /
    • v.46 no.6
    • /
    • pp.809-818
    • /
    • 2022
  • Background: The non-saponin fraction (NSF) of Korean Red Ginseng is a powder in which saponin is eliminated from red ginseng concentrate by fractionation. In this study, we examined the effect of NSF on age-associated sarcopenia in old mice. Methods: NSF (50 or 200 mg/kg/day) was administered orally daily to young (3-6-month-old) and old (20-24-month-old) C57BL/6 J mice for 6 weeks. Body weight and grip strength were assessed once a week during the oral administration period. The gastrocnemius and quadriceps muscle were excised, and the muscle fiber size was compared through hematoxylin and eosin staining. In addition, the effect of NSF on sarcopenia and inflammation/oxidative stress-related factors in hindlimb muscles was investigated by western blotting. Flow cytometry analysis was conducted to investigate the effect of NSF on immune homeostasis. Blood samples were collected by cardiac puncture, and the serum levels of insulin-like growth factor 1, pro-inflammatory cytokines, and glutathione were evaluated. Results: NSF significantly alleviated muscle strength, mass, and also fiber size in old mice. Age-associated impairment of immune homeostasis was recovered by NSF through retaining CD11b+F4/80+ macrophages and regulating inflammatory biomarkers. NSF also decreased the age-induced expression of oxidative stress factors. Taken together, NSF showed the effect of improving sarcopenia by inhibiting low-grade chronic inflammatory/oxidative stress factors. Conclusion: NSF exhibited anti-sarcopenia effects by regulating chronic inflammation and oxidative stress in old mice. Thus, we suggest that NSF is a promising restorative agent that can be used to improve sarcopenia in the elderly as well as maintain immune homeostasis.

Polysaccharides from Panax ginseng promote intestinal epithelial cell migration through affecting the Ca2+ related regulators

  • Huibin Zhu;Jianhong Cao;Xinyi Liang;Meng Luo;Anrong Wang;Ling Hu;Ruliu Li
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.89-96
    • /
    • 2023
  • Background and aim: Panax ginseng, a key herbal medicine of replenishing Qi and tonifying Spleen, is widely used in the treatment of gastrointestinal diseases in East Asia. In this study, we aim to investigate the potential effects and mechanisms of polysaccharides from P. ginseng (PGP) on intestinal mucosal restitution which is one of the crucial repair modalities during the recovery of mucosal injury controlled by the Ca2+ signaling. Methods: Rat model of intestinal mucosal injury was induced by indomethacin. The fractional cell migration was carried out by immunohistochemistry staining with BrdU. The morphological observations on intestinal mucosal injury were also performed. Intestinal epithelial cell (IEC-6) migration in vitro was conducted by scratch method. Western-blot was adopted to determine the expressions of PLC-𝛾1, Rac1, TRPC1, RhoA and Cav-1. Immunoprecipitation was used to evaluate the levels of Rac1/PLC-𝛾1, RhoA/TRPC1 and Cav-1/TRPC1. Results: The results showed that PGP effectively reduced the assessment of intestinal mucosal injury, reversed the inhibition of epithelial cell migration induced by Indomethacin, and increased the level of Ca2+ in intestinal mucosa in vivo. Moreover, PGP dramatically promoted IEC-6 cell migration, the expression of Ca2+ regulators (PLC-𝛾1, Rac1, TRPC1, Cav-1 and RhoA) as well as protein complexes (Rac1/PLC-𝛾1, Cav-1/TRPC1 and RhoA/TRPC1) in vitro. Conclusion: PGP increases the Ca2+ content in intestinal mucosa partly through controlling the regulators of Ca2+ mobilization, subsequently promotes intestinal epithelial cell migration, and then prevents intestinal mucosal injury induced by indomethacin.