• Title/Summary/Keyword: Well-to-wake

Search Result 200, Processing Time 0.029 seconds

Helicopter BVI Noise Prediction Using Acoustic Analogy and High Resolution Airloads of Time Marching Free Wake Method (자유후류기법에 의한 고해상도 공기력과 음향상사법을 이용한 헬리콥터 로터 블레이드-와류 상호작용 소음 예측)

  • Chung, K.;Lee, D.J.;Hwang, C.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.291-297
    • /
    • 2006
  • The BVI(blade vortex interaction) noise Prediction has been one of the most challenging acoustic analyses in helicopter aeromechanical Phenomenon. It is well known high resolution airloads data with accurate tip vortex positions are necessary for the accurate prediction of this phenomenon. The truly unsteady time-marching free-wake method, which is able to capture the tip vortices instability in hover and axial flights, is expanded with the rotor flapping motion and trim routine to predict unsteady airloads in forward and descent flights. And Farassat formulation 1-A based on the FW-H equation is applied for the noise prediction considering the blade flapping motion. Main objective of this study is to validate the newly developed prediction code. To achieve the objective, the descent flight condition of AH-1 OLS(operational loads survey) configuration is analyzed using present code. The predicted sectional thrust distribution and sectional airloads time histories show the present scheme is able to capture well the unsteady airloads caused by a parallel BVI. Finally, the predicted noise data, observed in two different positions where are 3.44 times of rotor radius far from the hub center, are quite reasonable agreements with the experimental data compared to the other analysis results.

Relationship between Shift Work, and Sleep Problems and Fatigue Symptoms of Nurses for General Hospitals (일부 종합병원 간호사들의 교대근무와 수면문제 및 피로자각증상과의 관련성)

  • Park, Young-Nam;Yang, Hye-Kyeong;Kim, Hyunli;Cho, Young-Chae
    • Korean Journal of Occupational Health Nursing
    • /
    • v.16 no.1
    • /
    • pp.37-47
    • /
    • 2007
  • Purpose: To find out the relationship between the shift work, and disrupted sleep and consequent fatigue symptoms. Methods: The questionnaires were given to 345 nurses of 4 hospitals with over 400 beds in Daejeon. Results: The shift workers showed worse subjective quality of sleep than the daytime workers, and had significantly higher frequency of "cannot get to sleep within 30 minutes", "wake up in the middle of the night" and "wake up in the early morning". The shift workers had significantly higher scores of subjective symptoms of fatigue than the daytime workers, and the fatigue was found to be the mental type. The subjective symptoms of fatigue scores were significantly higher in the group who had "cannot get to sleep within 30 minutes", "wake up in the middle of the night" and "wake up in the early morning". Conclusion: The study results indicated that the shift workers had the higher level of subjective symptoms of physical fatigue as well as the worse quality of sleep than the daytime workers. It is speculated that the factors attributable to the poor quality of sleep or sleep induction disorders of nurses of hospitals could be due in major part to adaptational difficulties resulting from frequent night shifts.

  • PDF

Vortex induced vibration analysis of a cylinder mounted on a flexible rod

  • Zamanian, Mehdi;Garibaldi, Luigi
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.441-455
    • /
    • 2019
  • In this study, vortex induced vibrations of a cylinder mounted on a flexible rod are analyzed. This simple configuration represents the key element of new conception bladeless wind turbine (Whitlock 2015). In this study the structure oscillations equation coupled to the wake oscillation equation for this configuration are solved using analytical perturbation method, for the first time. An analytical expression that predicts the lock-in phenomena range of wind speed is derived. The discretized equations of motion are also solved using RKF45 numerical method. The equations of motion are discretized by Galerkin method. Free vibration mode shape of the structure taking into account the discontinuity of the cross section are used as comparison function. Numerical results are compared to the analytical results, and they show a satisfying agreement. The effect of system parameters on the oscillations of structure and wake as well as on the lock-in domain are presented. Moreover, it is shown that the values of wind speed triggering the start and the stop of the lock-in phenomenon, for increasing wind speed are different from those values obtained during the reverse process, i.e., when the wind speed decreases.

Calculation of the Effective Wake in a Radially Sheared Inflow (유효반류 계산에 관한 연구)

  • E.D.,Park;S.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.1
    • /
    • pp.73-83
    • /
    • 1990
  • A theorectical method is presented for the calculation of the effective wake in an axisymmetric sheared inflow. The effective wake is essential in the design of optimal propulsor and in the reduction of propulsor induced vibration and noise. The nominal wakes are mathematically modelled and the effective wakes are calculated using the computer program developed on the basis of the linear momentum theory. The results show that shear effects arc dominant near the hub and the effective wakes reveal some differences near the hub for the moderately and heavily loaded propulsors but they arc well coincided with the other experimental or theorectical results for the lightly loaded propulsors. To improve the results it may be necessary to consider nonlinear terms neglected in this study and body boundary condition on hub.

  • PDF

Numerical simulation of unsteady propeller/rudder interaction

  • He, Lei;Kinnas, Spyros A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.6
    • /
    • pp.677-692
    • /
    • 2017
  • A numerical approach based on a potential flow method is developed to simulate the unsteady interaction between propeller and rudder. In this approach, a panel method is used to solve the flow around the rudder and a vortex lattice method is used to solve the flow around the propeller, respectively. An iterative procedure is adopted to solve the interaction between propeller and rudder. The effects of one component on the other are evaluated by using induced velocities due to the other component at every time step. A fully unsteady wake alignment algorithm is implemented into the vortex lattice method to simulate the unsteady propeller flow. The Rosenhead-Moore core model is employed during the wake alignment procedure to avoid the singularities and instability. The Lamb-Oseen vortex model is adopted in the present method to decay the vortex strength around the rudder and to eliminate unrealistically high induced velocity. The present methods are applied to predict the performance of a cavitating horn-type rudder in the presence of a 6-bladed propeller. The predicted cavity patterns compare well with those observed from the experiments.

A Numerical Optimization Study on the Ventilation Flows in a Workshop (작업장 환기장치 최적화 유동 연구)

  • 엄태인;장동순
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.1
    • /
    • pp.64-73
    • /
    • 1995
  • A preliminary study is performed in order to design an effective ventilation equipment for the control of possible pollutants in a workshop. To this end, the Patankar's SIMPLE methodology is used to investigate the flow characteristics of the contaminated thermal deflected jet which is encounted often in practical hood system. SIMPLE-Consistent algorithm is employed for the pressure-velocity coupling appeared in momentum equations. A two equation, k-$\varepsilon$ model is used for Reynolds stresses. The prediction data is compared well against the experimental results by Chang(1989). Considering the control of the wake due to its high turbulence together with the stagnant feature has been investigated in term of major parameters such as temperature and magnitude of the discharge velocity. Detailed discussions are made to reduce the size of the wake region which give rise to pollutant concentration stratification.

  • PDF

Development of a Method to Analyze Powering Performance of a Ship and its Application to Optimum Hull Form Design (선박(船舶)의 정수중(靜水中) 추진성능(推進性能) 해석(解析) 및 최적선형설계(最適船型設計)에의 응용(應用))

  • Seung-Il,Yang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.2
    • /
    • pp.35-48
    • /
    • 1985
  • The present work develops a method of evaluating thrust deduction and wake for different loads of the propeller using the concerted application of the theoretical tools and experimental techniques. It also shows the applicability of the new method to the design of optimum hull form. Firstly, the problem of hull-propeller interaction was analyzed in terms of inviscid as well as viscous components of the thrust deduction and wake. The wavemaking resistance of a hull and propeller were mathematically represented by sources on the hull surface and sink on the propeller plane, respectively. The strength of sink was determined by utilizing the radial distributions of propeller load and nominal wake. The resistance increment due to a propeller and the axial perturbation flow induced by the hull in the propeller plane were calculated. Especially, the inviscid component of the thrust deduction was calculated by subtraction the wavemaking resistance of a bare hull, the wavemaking resistance of a free-running propeller and the augmentation of propeller resistance due to hull action from the wavemaking resistance of the hull with a propeller. The viscous components of the thrust deduction and wake were estimated as functions of propeller load which were established by the propeller load varying test after deduction the calculated inviscid components. Secondly, an analysis method of powering performance was developed based on the potential theory and the propeller load varying test. The hybrid method estimates the thrust deduction, wake and propeller open-water efficiency for different propeller load. This method can be utilized in the analysis of powering performance for the propeller load variation such as the added resistance due to hull surface roughness, the added resistance due to wind, etc. Finally, the hybrid method was applied to the optimum design of hull form. A series of afterbody shapes was obtained by systematically varying the waterplane and section shapes of a parent afterbody without changing the principal dimensions, block coefficient and prismatic coefficient. From the comparison of the predicted results such as wavemaking resistance, thrust deduction, wake and delivered power, an optimum hull form was obtained. The delivered power of the optimized hull form was reduced by 5.7% which was confirmed by model tests. Also the predicted delivered power by the hybrid method shows fairly good agreement with the test result. It is therefore considered that the new analysis method of powering performance can be utilized as a practical tool for the design of optimum hull form as for the analysis of powering performance for the propeller load variation in the preliminary design stage.

  • PDF

Numerical Investigation of Sound Generation in the Flow Past a Cavity (공동을 지나는 비정상 유동에 의한 소음 방사 해석)

  • Heo, Dae-Nyoung;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.104-109
    • /
    • 2000
  • The modes of oscillation and radiated acoustic fields of compressible flows over open cavities are investigated computationally. The compressible Navier-Stokes equations are solved for two-dimensional cavities with laminar boundary layers upstream. The high-order and high-resolution numerical schemes are used for the evaluation of spatial derivatives and the time integration. Physically correct numerical boundary conditions are implemented to produce time-accurate solutions in the whole computation domain. The computational domain is large enough to directly resolve a portion of the radiated acoutic field. The results show a transition from a shear layer mode, for shorter cavities and lower Mach numbers, to a wake mode for longer cavities and higher Mach numbers. The shear layer mode is well characterized by Rossiter modes and these oscillations lead to intense upstream acoustic radiation dominated by a single frequency. The wake mode is characterized instead by a large-scale vortex shedding. Acoustic radiation is more intense, with multiple frequencies present.

  • PDF

A Study on the Near Wake of a Square Cylinder Using Particle Image Velocimetry (II)- Turbulence Characteristics - (PIV기법을 이용한정사각실린더의 근접후류에 관한 연구 (II)- 난류유동 특성 -)

  • Lee, Man-Bok;Kim, Gyeong-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1417-1426
    • /
    • 2001
  • Turbulent flow characteristics in the near wake of a square cylinder have been studied experimentally by using a Digital PIV method. Experiments are performed at the Reynolds numbers of 1600 and 3900 based on the free-stream velocity and the square height. The ensemble averaged turbulence statistics are acquired from 2030 realizations of instantaneous fluctuating velocity field after the conventional Reynolds decomposition. The differences in turbulent intensity and Reynolds shear stress profiles fur both oases indicate that the effect of Reynolds number seems to be descernible mainly due to the occurrence of transition in the separated shear layer. Because of the periodic nature of vortex shedding process, transverse velocity fluctuations contribute dominantly , to turbulent kinetic energy distribution. A comparison with previous LDV data obtained at much higher Reynolds number shows a fairly good agreement each other. It turns out that the effect of Reynolds number diminishes as increasing Reynolds number, which is a well-known feature of a sharp-edged bluff body wake. The streamwise variation of turbulence intensities are compared with those from a circular cylinder along the centerline at the same Reynolds number. The overall magnitudes and the decay rates of turbulence intensities are quite similar, but some differences are noticeble especially in the transverse intensity variation.

Triplet loss based domain adversarial training for robust wake-up word detection in noisy environments (잡음 환경에 강인한 기동어 검출을 위한 삼중항 손실 기반 도메인 적대적 훈련)

  • Lim, Hyungjun;Jung, Myunghun;Kim, Hoirin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.468-475
    • /
    • 2020
  • A good acoustic word embedding that can well express the characteristics of word plays an important role in wake-up word detection (WWD). However, the representation ability of acoustic word embedding may be weakened due to various types of environmental noise occurred in the place where WWD works, causing performance degradation. In this paper, we proposed triplet loss based Domain Adversarial Training (tDAT) mitigating environmental factors that can affect acoustic word embedding. Through experiments in noisy environments, we verified that the proposed method effectively improves the conventional DAT approach, and checked its scalability by combining with other method proposed for robust WWD.