• Title/Summary/Keyword: Weldment Design

Search Result 54, Processing Time 0.02 seconds

A Study on Embedded Crack at the Hatch Coaming FCA Butt Weldment in an Ultra Large Containership on the Basis of Fracture Mechanics (초대형 컨테이너선의 해치 코밍 용접부의 내부 균열에 대한 파괴역학적 연구)

  • Shin, Sang-Beom;Lee, Joo-Sung
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.61-61
    • /
    • 2010
  • The purpose of this study is to prevent the unstable fracture at the FCA butt weldment of hatch coaming deck in the ultra large containership during service life. In order to do it, the behavior of the embedded crack at the weldment under design loading conditions was evaluated in accordance with BS7910. Here, the level of primary stress induced by ship motion was evaluated by the design code of classification society and FEA. The level of residual stress as secondary stress was calculated in consideration of the restraint degree of weldment and welding heat input by using the predictive equation proposed by authors in the previous study. The fatigue crack growth rate at the weldment was evaluated using CT specimen in accordance with ASTM E647. According to the results, although the allowable defect for embedded crack specified in the classification society exists at the weldment, the occurrence possibility of unstable fracture at the weldment could not be negligible, regardless of CTOD value given in this study. So, in this study, the effect of initial defect size, welding heat input, restraint degree and CTOD on the fracture mechanical characteristics of embedded crack at the weldment was evaluated by the comprehensive fracture assessment. Based on the results, the design criteria including allowable defect, residual stress level and CTOD value was established to prevent the unstable fracture at the FCA butt weldment of hatch coaming deck in an ultra large containership during service life of 20years.

  • PDF

A Study on the Angular Distortion Prediction of Double Sided Multi-pass Butt Weldment (다층 양면 개선 맞대기 용접부의 각 변형 예측에 관한 연구)

  • Shin, Sang-Beom;Youn, Joong-Geun
    • Journal of Welding and Joining
    • /
    • v.25 no.1
    • /
    • pp.37-41
    • /
    • 2007
  • The purpose of this study is to establish the predictive method of angular distortion of the double-sided multi-pass butt weldment achieve it, the behavior of angular distortion in the butt weldment were investigated using comprehensive finite element analyses and experiments. The angular distortion in the multi-pass butt weldment strongly depends on the welding heat input(Q) and the effective bending rigidity of the weld throat. The effective bending rigidity of the first welding pass on the backing side was defined as the function of dimensionless parameter(k) and a bending rigidity of bead-on-plate weldment. Based on the results, the predictive equation for angular distortion of multi-pass butt weldment was proposed and verified by experiments.

Benefits of the S/F Cask Impact Limiter Weldment Imperfection

  • Ku, Jeong-Hoe;Lee, Ju-Chan;Kim, Jong-Hun;Park, Seong-Won;Park, Hyun-Soo
    • Nuclear Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.191-203
    • /
    • 2000
  • This paper describes the beneficial effect of weldment imperfection of the cask impact limiter, by applying intermittent-weld, for impact energy absorbing behavior. From the point of view of energy absorbing efficiency of an energy absorber, it is desirable to reduce the crush load resistance and increase the deformation of the energy absorber within certain limit. This paper presents the test results of intermittent-weldment and the analysis results of cask impacts and the discussions of the improvement of impact mitigating effect by the imperfect-weldment. The rupture of imperfect weldment of an impact limiter improves the energy-absorbing efficiency by reducing the crush load amplitude without loss of total energy absorption. The beneficial effect of weldment imperfection should be considered to the cask impact limiter design.

  • PDF

Fatigue life Evaluation of Rib Weldment for Generator Shaft (회전기 shaft의 rib 용접부 피로수명 평가)

  • Yun Jung-Geun;Kim Hyeon-Su;Hwang Ju-Hwan
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.83-85
    • /
    • 2006
  • The purpose of this study is to evaluate the fatigue life at the rib weldment of generator shaft. In order to do it, the stress distributions at the weldment under design loading condition were evaluated using FEA and analytical approach. The fatigue strengths of the as welded and toe machined rib specimen were estimated using 3-points bending fatigue test. Based on the fatigue test results, the S-N curve far the rib weldment of the generator shaft with post treatment was established.

  • PDF

A Study on the Characteristic of Stress Behavior of Topside Weldment Welded after Launching (진수후 데크 topside 용접부의 응력 거동 특성에 관한 연구)

  • Lee, Dong-Ju;Shin, Sang-Beom
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.58-58
    • /
    • 2010
  • The purpose of this study is to evaluate the structural safety at the topside weldment of hull structure, which was welded after launching. For it, the variations of residual stress and distortion at the topside weldment with loading conditions such as hull girder hogging bending moment after launching and free initial loading state was evaluated by using FEA. And the maximum stress range at the weldment under design loads specified by classification society was evaluated by FEA. In this case, the residual stress and welding distortion at the topside weldment was assumed to be initial imperfection. In accordance with FEA results, regardless of initial loading condition, tensile residual stress was found. However, the residual stress and welding distortion at the topside weldment produced under hogging condition was less than those of topside weldment under free loading state. That is, the amount of residual stress at the topside weldment decreased with an increase in the amount of tension load caused by hogging condition. It was because the compressive thermal strain at the topside weldment produced during welding was reduced by tensile load. However, the maximum stress range at the topside weldment under maximum hull girder bending moment was almost similar regardless of initial loading condition. So, if the problem related to the soundness of weldment is not introduced by initial load, the effect of initial loading condition during welding on fatigue strength of topside weldment could be negligible.

  • PDF

Weldment Design of Supports for Cryogenic Storage Tank considering Insulation (단열을 고려한 초저온 액체질소 저장 탱크의 지지대 용접부 설계)

  • Choi, Dong-Jun;Oh, Jung-Taek;Jung, Jae-Hyun;Cho, Jong-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.131-136
    • /
    • 2008
  • The double-walled steel vessel with powder insulation in the space between the walls is used to minimize heat transfer by radiation and conduction in cryogenic storage tank. The vacuum required the insulation is much less extreme than with high-vacuum or multilayer insulations. The solid supports are used to bear the weight of the inner container. Thermal and structural analysis of the tank have been carried out to study the effect of vacuum and weldment geometry of the internal supports. Heat flux in wall is increased with increasing of thermal conductivity of perlite. Heat flux and stress of support is not affected by weldment geometry.

A Study on the Behavior Characteristics of Residual Stress of the Thin Butt Weldment by Mechanical Tensioning Method (인장법에 의한 박판 판계 용접부의 잔류 응력 거동 특성에 관한 연구)

  • Kim, Ha-Keun;Kim, Kyung-Ku;Shin, Sang-Beom
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.57-57
    • /
    • 2010
  • For thin panel welded structure, the various welding distortions were found due to the low resistance against welding deformation. Especially, buckling distortion induced in the thin panel welded structure produce severe problems related to cost in production stage and safety in service life. So, many researches including mechanical and thermal tensioning method for preventing the occurrence of buckling distortion in the production stage have been performed. The purpose of this study is to identify the behavior of longitudinal residual stress at the SA butt weldment with thin plate of 6mm thickness under tension load by 3 dimensional FEA. For it, mesh design for 3D FEA was constructed with 20 nodes brick element for butt weldment and 8 nodes shell element for base metal. According to FEA results, the longitudinal compressive strain inducing tensile residual stress at the butt weldment decreased. It was because the compressive thermal strain in way of weldment was reduced by tension load. The control effect of residual stress increased with an increase in tension load. So, if the amount of tension load applied to the weldment exceeds 1.5 times of longitudinal shrinkage force, the amount of longitudinal residual stress decreased below the critical value inducing the buckling distortion at the SA butt weldment. Its validity was verified by experiment.

  • PDF

A Study on the Prediction of Fatigue Crack Growth Rate in Stainless Steel Weldments (스테인레스강 용접부의 피로균열 전파속도 예측에 관한 연구)

  • 이용복
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.68-78
    • /
    • 1998
  • Welding structure contains residual stress due to thermal-plastic strain during welding process, and its magnitude and distribution depend on welding conditions. Cracks initiate from various defects of the weldment, propagate and lead to final fracture, The crack initiation and propagation processes are affected by the magnitude and distribution. Therefore, the magnitude and distribution of weldment residual stress should be considered for safety design and service of welding structures. Also it is very important that more accurate assessment method of fatigue crack growth must take into account the redistributing the residual stress quantitively. because the residual stress in weldment has characteristics of its redistribution with loading magnitude, number of cycles and fatigue crack propagation. In this study fatigue crack behavior of STS-304 weldment was investigated during crack propagation into tensile residual stress region or compressive residual stress region. Crack growth rates were predicted and compared with experimental results.

  • PDF

A Study on the Prediction of Welding Distortion and Residual Stress for Channel I Butt SA Weldment Using FE Analysis (유한요소해석을 이용한 채널 I 형 잠호 맞대기 용접부의 변형 및 잔류 응력 예측에 관한 연구)

  • Shin, Dae-Hee;Shin, Sang-Beom;Lee, Joo-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.6
    • /
    • pp.598-604
    • /
    • 2007
  • The purpose of this study is to establish the predictive method of welding distortion and residual stress for the channel I butt SA (submerged arc) weldment using FEA. In order to do it, the heat input model for the weldment was defined as the combined heat source with the surface heat flux of gaussian distribution and volumetric heat source uniformly distributed within weld groove by comparing the shapes of molten pool and temperature distribution obtained by FEA with those of experiments. The arc efficiency of SA welding for two-dimensional FE analysis was evaluated as 0.85. The welding distortion and residual stress of the weldment obtained by FEA and heat input model proposed have a good agreement with those obtained by experiment. Based on the results, it was suggested that the proper heat input model should be required to evaluate the welding distortion for weldment.

An Experiment Study for Hardness Characteristic of Weldment according to Welding Heat-Input of Vertical GMA Welding Process (수직 GMA 용접공정 입열량에 따른 용접부 경도특성에 대한 실험적 연구)

  • Park, Min-Ho;Lee, Jong-Pyo;Jin, Byeong-Ju;Kim, In-Ju;Kim, Ji-Sun;Kim, Ill-Soo
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.35-42
    • /
    • 2017
  • The GMA welding process involves large number of interdependent variables which may affect product quality, productivity and cost effectiveness. The relationships between process parameters for a vertical weldment and mechanical properties are complex because a number of process parameters are involved. To make the vertical-position welding, a method that predicts bead geometry and accomplishes the desired mechanical properties of the weldment should be developed. In addition, a reliable welding process and conditions must be implemented to reduce weld structure failure. In this study, the welding process analysis of investigates the interaction between the heat input and welding parameter(Welding current, Arc voltage, Welding speed) for predicting the weldment hardness.