• Title/Summary/Keyword: Welding speed control

Search Result 125, Processing Time 0.023 seconds

Recent Studies of Laser Metal 3D Deposition with Wire Feeding (와이어 송급 레이저 금속 3차원 적층 연구동향)

  • Kam, Dong-Hyuck;Kim, Young-Min;Kim, Cheolhee
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.35-40
    • /
    • 2016
  • Recent developments of Laser metal 3D deposition with wire feeding are reviewed which provide an alternative to powder feeding method. The wire feeding direction, angle and position as well as laser power, wire feeding rate, and deposition speed are found to be key parameters to make quality deposition with high throughput. When compared with the powder feed, the wire feed shows higher material efficiency, higher deposition rate, and smoother surface. Large elongated columnar grains which have epitaxial growth across deposit layers are observed in deposit cross sections. The growth direction is parallel to the thermal gradient during the deposit process. Tensile properties are found to be dependent on the direction due to the anisotropic deposit property. A real-time feedback control is demonstrated to be effective to improve the deposition stability.

A Study on Detecting and Monitoring of Weld Root Gap using Neural Networks (신경회로망을 이용한 용접 Root Gap 검출과 모니터링에 관한연구)

  • Kang Sung-In;Kim Gwan-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1326-1331
    • /
    • 2006
  • Weld root gap is a important fact of a falling-off weld quality in various kind of weld defect. The welding quality can be controlled by monitoring important parameters, such as, the Arc voltage, welding current and welding speed during the welding process. Welding systems use either a vision sensor or an Arc sensor, both of which are unable to control these parameters directly. Therefore, it is difficult to obtain necessary bead geometry without automatically controlling the welding parameters through the sensors. In this paper we propose a novel approach using neural networks for detecting and monitoring of weld root gap and bead shape. Through experiments we demonstrate that the proposed system can be used for real welding processes. The results demonstrate that the system can efficiently estimate the weld bead shape and detect the welding defects.

A Study about Analysis of Weld Distortion using Genetic Algorithm (유전적 알고리듬을 이용한 용접변형 해석에 관한 연구)

  • Kim, Ill-Soo;Kim, Hak-Hyoung;Jang, Han-Kee;Kim, Hee-Jin;Kwak, Sung-Kyu;Ryoo, Hoi-Soo;Shim, Ji-Yeon
    • Journal of Welding and Joining
    • /
    • v.27 no.4
    • /
    • pp.54-59
    • /
    • 2009
  • In the process to manufacture for metallic structures, control of welding deformation is one of an important problems connected with reliability of the manufactured structures so that welding deformation should be measured and controlled with quickly and actively. Also, welding parameters which have as lot of effects on welding deformation such as arc voltage, welding current and welding speed can also be controlled. The objectives for this study were to develop a simple 2-D FEM to calculate not only the transient thermal histories but also the sizes of fusion and heat-affected zone (HAZ) in multi pass arc welds including the butt and fillet weld type with dissimilar thickness, and to concentrate on a developed model for the finding the parameters of Godak's moving heat source model based on a GA. The developed model includes a GA program using MATLB and GA toolbox, and a batch mode thermal model using ANSYS software. Not only the thermal model was verified by comparison with Goldak's work but also the developed model was validated with molten zone section experimental data.

A Return Bender Automatic Brazing Welding System for Heat Exchangers (열교환기용 리턴 밴더 자동 브레이징 용접 시스템)

  • Lee, Yong-Joong;Kang, Jin-Kap;Lee, Hyung-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.2
    • /
    • pp.49-55
    • /
    • 2006
  • In the consideration of the problem occurred by certain return bender brazing welding works that depend only on handworks, the automatization of the whole production line is impossible due to the high dependency of skillful workers. In addition, it is difficult to establish a standardization due to the various heat exchanger model and irregular amount of orders, and the fault reduction is also impossible due to the severe difference in brazing conditions. It is necessary to develop a method, which quantitively analyzes the problem existed in this manual brazing welding of return benders and technically solves that problem, and to lead the improvement of the productivity and cost reduction in order to increase the business competitive power. Then, this will contribute the technical development of automatic welding for Korea's heat exchanger businesses. Thus, this study develops an automatic technology, which automatically controls the flame strength using digital control methods, for various models and produces a sample model. It is possible to increase the productivity and produce uniformed and qualified products by solving the problem existed in manual processes using the developed automatic return bender brazing system. In addition, the brazing condition can be automatically controlled according to the model and line speed, and such an economical operation can reduce the production cost. The developed system is expected to future applications not only heat exchangers in the field of refrigeration and air conditioning, but also other various industrial fields that apply heat exchangers, such as car and boiler industries.

  • PDF

A Fast Seam Tracking Algorithm for Laser Welding (레이져 용접을 위한 고속 용접선 추적 알고리즘)

  • 배재욱
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.52-55
    • /
    • 1997
  • This paper discusses an automatic visual-servoing system, in which a laser and a CCD camera are used for imaging the pattern of joint groove. The algorithm used here is simple and robust to find out the gap width and gap center. As a consequence, the speed of algorithm is very fast and optimized. A feature of this system is that it processes only by summing the vertical line and horizontal line of screen without any image preprocessing in order to get the energy information of lines alternatively. It is practical and useful for the system requiring a fast process time of vision.

  • PDF

A New Algorithm of Weaving Motion Using Bezier Spline

  • Chung, Won-Jee;Hong, Dae-Sun;Kim, Dae-Young;Seo, Young-Kyo;Hong, Hyung-Pyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2743-2746
    • /
    • 2003
  • In this paper, we propose a new weaving trajectory algorithm for the arc welding of a articulated manipulator. The algorithm uses the theory of Bezier spline. We make a comparison between the conventional algorithms using Catmull-Rom curve and the new algorithms using Bezier spline. The proposed algorithm has been evaluated based on the MATLAB environment in order to illustrate its good performance. The algorithm has been implemented on to the industrial manipulator of DR6 so as to show its real possibility. Through simulations and real implementations, the proposed algorithm can result in high-speed and flexible weaving trajectory planning and can reduce the processing time because it needs one-half calculation compared to the conventional algorithm using Catmull-Rom curve.

  • PDF

An Underwater Inspection System to Detect Hull Defects of a Ship (수중용 선체외판 길함 검사용 장치 개발)

  • Kim, Young-Jin;Cho, Young-June;Lee, Kang-Won;Shon, Woonh-Hee
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.281-284
    • /
    • 2006
  • After building a ship in a shipyard, there are so many repeated inspection of welding seam defects and painting status before delivering to the ship's owner. An inspection on the bottom part of a ship in commercial service should be done in every two years for the purpose of safety and for the prevention of ship speed deterioration. conventional welding seam inspection systems are rely on the visual inspection by human or the ultrasonic inspection for the selective part of a ship. This paper suggests a remote controlled inspection system for the examination of large ships or steel structures. The proposed system moves in contact with the ship under inspection and have a CCD camera to provide visual-guidance information to a remotely located human worker. Additionally this system utilizes a weld line tracking algorithm for an optimal position control. We verified the effectiveness of the inspection system by experimental data.

  • PDF

Development of Intelligent Filler Wire Feeding Device for Improvement of Weld quality (용접부 품질향상을 위한 지능형 용접 와이어 공급 장치 개발)

  • Lee J.S.;Sohn Y.I.;Park K.Y.;Lee K.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.950-955
    • /
    • 2005
  • This paper describes an intelligent filler wire feeding device which can control 3- dimensional seam tracking and the filler wire speed by measuring the gap position and the joint gap width in laser welding. By means of visual sensor controlled filling the missing material into the joint gap and 3 dimensional seam tracking, lineup errors from manufacturing tolerances and the repeatability of lineup jigs and weld robot can be balanced and at an even seam quality which avoids weld defects. In this paper, we assessed weld quality in 2mm sheets of A16061 which had various gap width by using the intelligent filler wire feeding device.

  • PDF

MECHANICAL PROPERTIES OF LASER-WELDED CAST TITANIUM AND TITANIUM ALLOY (원심 주조된 타이타늄과 타이타늄 합금의 레이저 용접 특성)

  • Yun, Mi-Kyung;Kim, Hyun-Seung;Yang, Hong-So;Vang, Mong-Sook;Park, Sang-Won;Park, Ha-Ok;Lee, Kwang-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.642-653
    • /
    • 2006
  • Purpose : The purpose of this study was to investigate the effect of the output energy(voltage) of laser welding on the strength and properties of joint of cast titanium(CP Gr II) and titanium alloy(Ti-6Al-4V). Material and method : Cast titanium and its alloy rods(ISO6871) were prepared and perpendicularly cut at the center of the rod. After the cut halves were fixed in a jig, and the joints welded with a laser-welding machine at several levels of output voltage of $200V{\sim}280V$. Uncut specimens served as the non-welded control specimens The pulse duration and pulse spot size employed in this study were 10ms and 1.0mm respectively. Tensile testing was conducted at a crosshead speed of 0.5mm/min. The ultimate tensile strength(MPa) was recorded, and the data (n=6) were statistically analyzed by one-way analysis of variance(ANOVA) and Scheffe's test at ${\alpha}$=0.05. The fracture surface of specimens investigated by scanning electron microscope (SEM). Vickers microhardness was measured under 500g load of 15seconds with the optimal condition of output voltage 280V. Results : The results of this study were obtained as follows, 1. When the pulse duration and spot size were fixed at 10ms and 1.0mm respectively, increasing the output energy(voltage) increased UTS values and penetration depth of laser welded to titanium and titanium alloy. 2. For the commercial titanium grade II, ultimate tensile strength(665.3MPa) of the specimens laser-welded at voltage of 280V were not statistically(p>0.05) different from the non-welded control specimens (680.2MPa). 3. For the titanium alloy(Ti-6Al-4V), ultimate tensile strength(988.3MPa) of the specimens laser-welded at voltage of 280V were statistically(p<0.05) different from the non-welded control specimens (665.0MPa). 4. The commercial titanium grade II and titanium alloy(Ti-6Al-4V) were Vickers microhardness values were increased in the fusion zone and there were no significant differences in base metal, heat-affected zone.

Rotor Resistance Estimation Using Slip Angular Velocity In Vector-Controlled Induction Motor (벡터제어 유도전동기의 슬립 각속도를 이용한 회전자 저항 추정)

  • Park, Hyunsu;Jo, Gwon-Jae;Choi, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1308-1316
    • /
    • 2018
  • Accurate tuning of parameter is very important in vector-controlled induction motor. Among the parameters of induction motor, detuning of rotor resistance used in controller design deteriorates drive performance. This paper presents a novel rotor resistance estimation strategy using slip angular velocity in vector-controlled induction motor drives. The slip angular velocity can be calculated by two methods. Firstly, it can be induced from the rotor voltage equation. Secondly, it can be induced from the difference between synchronous angular velocity and rotor angular velocity. The first method includes the rotor resistance, while the second method dose not include this parameter. From this fact, the rotor resistance can be identified by comparing the slip angular velocities in the two methods. In the tuned states of the rotor resistance, performances of flux estimator and speed drive are discussed. The simulation and experimental results are given to verify the validity of the proposed method in various situations.