• Title/Summary/Keyword: Welding method

Search Result 1,883, Processing Time 0.028 seconds

Determination on Optima Condition for a Gas Metal Arc Welding Process Using Genetic Algorithm (유전 알고리즘을 이용한 가스 메탈 아크 용접 공정의 최적 조건 설정에 관한 연구)

  • 김동철;이세헌
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.63-69
    • /
    • 2000
  • A genetic algorithm was applied to an arc welding process to determine near optimal settings of welding process parameters which produce good weld quality. This method searches for optimal settings of welding parameters through systematic experiments without a model between input and output variables. It has an advantage of being able to find optimal conditions with a fewer number of experiments than conventional full factorial design. A genetic algorithm was applied to optimization of weld bead geometry. In the optimization problem, the input variables was wire feed rate, welding voltage, and welding speed and the output variables were bead height, bead width, and penetration. The number of level for each input variable is 16, 16, and 8, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions, 2048 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions from less than 40 experiments.

  • PDF

Determination of optimal Conditions for a Gas Metal Arc Wending Process Using the Genetic Algorithm

  • Kim, D.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.44-50
    • /
    • 2001
  • A genetic algorithm was applied to the arc welding process as to determine the near-optimal settings of welding process parameters that produce the good weld quality. This method searches for optimal settings of welding parameters through the systematic experiments without the need for a model between the input and output variables. It has an advantage of being capable to find the optimal conditions with a fewer number of experiments rather than conventional full factorial designs. A genetic algorithm was applied to the optimization of the weld bead geometry. In the optimization problem, the input variables were wire feed rate, welding voltage, and welding speed. The output variables were the bead height bead width, and penetration. The number of levels for each input variable is 16, 16, and 8, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions,2048 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions in less than 40 experiments.

  • PDF

Development of a High Strength Manufacturing Technology for the Shock Absorber Base Assembly Using Friction Welding (마찰용접을 이용한 고강도 쇼크업소버 베이스 어셈블리의 제조 기술 개발)

  • Chung, Ho-Yeon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.1
    • /
    • pp.90-96
    • /
    • 2011
  • The shock absorber base assembly is one of the parts in the shock absorber equipment that controls the vehicle movement. It absorbs the shock and vibration to guarantee riding stability and comfort. It demands strength, reliability and strict airtightness of the welded section because the shock absorber base assembly is a container which resists pressure and needs durability by being filled with gas and oil. However, the current engineering needs a lot of production time, has a high cost and shows a low production rate. These problem due to the eight production processes, four of which are spot welding, reinforcement welding like metal active welding (MAG), prior process of the base assembly cap and tube for precision and pressing. We will analyze the manufacturing processes of the base assembly and suggest an improved manufacturing method that uses frictional welding. The results will show that the new method of the frictional welding is better than the previous welding technique. Through the use of this concept of frictional welding, the welding conjunction will be strengthened, measurements will be more precise, and the cost and the number of processes will be reduced.

Analysis of Welding Distortion during the Production of Fuel Tanks for Excavators (연료탱크 제작시 시뮬레이션을 통한 용접변형 해석)

  • Yang, Young-Soo;Kim, Duck-Youn;Bae, Kang-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.24-34
    • /
    • 2016
  • To attach a fuel tank to an excavator, two sets of mounting plates on which three bosses are attached are welded onto the tank. In this study, the welding process of a fuel tank for an excavator was modeled using a finite element numerical method. The tank was modeled as a simple plate to which the mounting plate or bosses were attached by fillet welding. Thermal and thermo-elasto-plastic analyses of the welding process were carried out to predict the temperature distribution and material distortion during welding, respectively. Three different welding sequences for the tank were also modelled to compare the deformation that occurred due to each welding sequence. The results of the analysis predicted that changing the welding sequence around the mounting plate could not position the boss within the allowable dimensional range. The results also revealed the sequence in which the maximum distortion of the bosses welded onto the tank was 30% less than the maximum distortion due to the other sequences.

A Study on the Mechanical Behavior of Resistance Spot Welding by Finite Element Method (유한요소법에 의한 저항 점용접부의 역학적 특성에 관한 연구)

  • 방한서;주성민;방희선;차용훈;최병기
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.77-82
    • /
    • 1999
  • Resistance spot welding process is completed in very short time and there are many factors affecting on the generation of heat. It is difficult to control these experimental factors and monitor distribution of the temperature and stresses in the experimental analysis case. and too much time and expense are required for the experimental trials to fine proper welding condition. So numerical analyses have been attempted steadily, but most numerical analyses on the resistance spot welding are mainly focused on thermal behavior. Therefore, in this paper, the numerical analysis of mechanical behavior as well as heat conduction is carried out for the spot welding process. For this numerical analysis, axial symmetric computer program for the spot welding analysis by F.E.M. has been developed considering heat conduction and thermal elastic-plastic theory. Material properties depending on temperature such as density, heat conductivity, heat expansion coefficient, specific heat, yield stress, elastic modulus, and specific resistance are considered. Using the results of temperature distribution obtained from heat conduction analysis, the thermal elastic-plastic analysis is carried out to clarify mechanical behavior of spot welded specimen. In order to evaluate the effect of residual stresses, numerical analyses are carried out under tension-shear load in two cases respectively; one with residual stress, the other without residual stresses.

  • PDF

A Study on the Thermal Behavior of Friction Stir Welding in hi 6061 Alloys (Al 6061합금의 마찰교반접합시 접합부의 열거동에 관한 연구)

  • 방한서;김흥주;고민성;김규훈
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.534-537
    • /
    • 2002
  • In the various industry such as shipbuilding and automobile, etc., Al-alloys are used to reduce weight and improve economical efficiency, and they are mainly utilized in the process of Friction Stir Welding (FSW). A number of studies have been carried out on the metallurgical characteristics of friction stir welding In Al-alloys. However, research on the thermal behavior of FSW by using numerical analysis is not sufficient in the domestic and abroad. In this paper, therefore, numerical simulation was used to find out thermal behaviour of FSW by finite element method. We considered heat source that occurred by friction between tool shoulder including pin and base metal. To confirm the result of simulation, macrostructure is examined and compared after welding. The result of numerical simulation shows that Al-alloy is welded under a melting point of Al around pin by FSW.

The 3-layer laser welding method of zinc coated steel for car body (자동차 차체용 아연도금강판의 3겹 레이저용접 방법)

  • Lee, Hui-Beom;Jang, In-Seong;Jeong, Dae-Hyeon;O, Gwang-Min;Sim, Min-Seon
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2006.06a
    • /
    • pp.35-40
    • /
    • 2006
  • Laser welding is high power density welding method which is higher speed and productivity, lower thermal deformation, without material restrictions for car body welding. But, in case of zinc coated sheet metal welding, the gap is needed $0.1{\sim}0.2mm$ to avoid weld bead blowup. This paper describe that it used dimple and pressure roller tool to improve laser welding quality for 3-layer zinc coated sheet metal.

  • PDF

Welding Distortion Analysis of a Laser Welded Thin Box Structure (얇은 박스형 용접구조물의 용접변형 해석)

  • Kim, Choong-Gi;Kim, Jae-Woong;Kim, Kim-Chul
    • Journal of Welding and Joining
    • /
    • v.25 no.5
    • /
    • pp.72-77
    • /
    • 2007
  • Prediction and control of the thermal distortion is particularly important for the design and manufacture of welded thin metal structure. In this study, numerical computations are performed to analyze effect of structure section shape and weld line location on distortion. In addition, this study aims to develop a thermal elasto-plastic simulation using finite element method to predict distortion, with particular emphasis on bending deformation generated in outline welding of a thin box structure. From the numerical analysis, it was revealed that the section shape and weld line location play an important role on the welding distortion. Among 3 types of section shape design proposed in this study, the least deformation remained in the two path welded structure.