• Title/Summary/Keyword: Welding Simulation

Search Result 422, Processing Time 0.022 seconds

A Study on Extru-Shear Welding(ESW) Process of Aluminum Plates (알루미늄 판재의 압출전단접합에 관한 연구)

  • Lee, K.K.;Lee, M.Y.;Jin, I.T.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.452-459
    • /
    • 2010
  • It was investigated that two plates of aluminum can be welded by hot extru-shear welding process with extru-shear welding dies, and that the welding strength and metal flow on the welding section were analyzed by computer simulation according to the welding variables such as inclined angle of cutter and overlapped length of plates and temperature of plates. It was known by computer simulation that welding strength on the welding section of plates could be influenced by the inclined angle of cutter and overlapped length of plates and temperature of plates. And it was known by experiments that two plates of aluminum can be welded on the end sections by hot extru-shear welding process using extru-shear welding dies, and that welding strength is the highest when inclined angle of dies is $70^{\circ}$, and overlapped length is 1.2 mm, and temperature is $520^{\circ}$, when aluminum 5052 two plates with 1.6 mm thickness are used as welding material.

Numerical Simulation of Bubble and Pore Generations by Molten Metal Flow in Laser-GMA Hybrid Welding (레이저-GMA 하이브리드 용접에서 유동에 의한 기포 및 기공 형성 해석)

  • Cho, Won-Ik;Cho, Jung-Ho;Cho, Min-Hyun;Lee, Jong-Bong;Na, Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.26 no.6
    • /
    • pp.67-73
    • /
    • 2008
  • Three-dimensional transient simulation of laser-GMA hybrid welding involving multiple physical phenomena is conducted neglecting the interaction effect of laser and arc heat sources. To reproduce the bubble and pore formations in welding process, a new bubble model is suggested and added to the established laser and arc welding models comprehending VOF, Gaussian laser and arc heat source, recoil pressure, arc pressure, electromagnetic force, surface tension, multiple reflection and Fresnel reflection models. Based on the models mentioned above, simulations of laser-GMA hybrid butt welding are carried out and besides the molten pool flow, top and back bead formations could be observed. In addition, the laser induced keyhole formation and bubble generation duo to keyhole collapse are investigated. The bubbles are ejected from the molten pool through its top and bottom regions. However, some of those are entrapped by solid-liquid interface and remained as pores. Those bubbles and pores are intensively generated when the absorption of laser power is largely reduced and consequently the full penetration changes to the partial penetration.

A Study on the Thermal and Mechanical Characteristic of Hybrid Welded Ship Structure A-grade Steel (선체구조용 A급 강재의 하이브리드 용접에 대한 열 및 역학적 특성에 관한 연구)

  • Oh, Chong-In;Kim, Young-Pyo;Park, Ho-Kyung;Bang, Han-Sur
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.64-68
    • /
    • 2007
  • Recently, there has been considerable research in the field of application of Laser-Arc hybrid welding for superstructures, such as ship-structures, transport vehicles etc. However, the study on heat distribution and welding residual stress of hybrid weld by numerical simulation leaves much to be desired. Therefore, in this study, an optimized welding condition and numerical simulation for hybrid welding, using previous numerical analysis to calculate the heat source for hybrid welding, has been analyzed. For this purpose, fundamental welding phenomena of the hybrid process, using Laser and, is investigated. In order to calculate temperature and residual stress distribution in hybrid welds, a finite element heat source model is developed on the basis of experimental results and characteristics of temperature. Residual stress distribution in hybrid welds are understood from the result of simulation, and compared with the experimental values.

Analysis of Welding Positions for Reduction of Musculoskeletal Disorders Based on Simulation Technique (시뮬레이션 기법에 기초한 근골격계 질환 감소를 위한 용접자세 분석)

  • Park, Ju-Yong;Kim, Dong-Joon;Chang, Seong-Rok;Song, Chang-Sub
    • Journal of Welding and Joining
    • /
    • v.25 no.4
    • /
    • pp.79-85
    • /
    • 2007
  • The industrial disaster caused by a work-related disease like a Musculoskeletal Disorders(MSDs) becomes a big social problem and increases rapidly. This leads to the degradation of the labor desire and the productivity. Welding work belongs to the work with a high intensity. This paper aims to analyze the welding work in the various positions from a view-point of the burden of the human musculoskeletal system and to propose the desired position with lower burden. For this purpose the real welding work was observed in the shipyard and analyzed using the RULA method, a powerful ergonomics tool. The 3-dimensional simulation model fur this work was also developed. In this model, ergonomics human model and welding work environment were built. This model was verified through the comparison to the real work. This paper showed that the improvement of welding position by changing the location of a stool and using some auxiliary tool can reduce the work intensity remarkably and lead to the decrease of MSDs.

Effect of $O_2$ and Al Coantent on the Weld Penetration (STS 강의 $O_2$ 및 Al함량이 용접용입량에 미치는 영향)

  • 김희봉;김정호;이창희
    • Journal of Welding and Joining
    • /
    • v.15 no.3
    • /
    • pp.65-78
    • /
    • 1997
  • The effect of $O_2$and Al contents and the variation of welding parameters such as arc currents, welding speed on the weld penetration was investigated. Examination of weld penetration using GTAW was accomplished in the ferritic STS410L and austenitic STS304. Good penetration could be controlled by the variation of $O_2$ and Al contents in STS304. However, influences of $O_2$ and Al contents on the ferritic STS410L are far less than those on the austenitic STS304. Welding parameters should be considered first before controlling $O_2$ and Al contents for a good penetration in ferritic STS410L. In the simulation study under the stationary heat sources, the results of simulation and experiment have a similar tendency.

  • PDF

The Analysis of Welding Deformation in Arc-spot Welded Structure (I) - Temperature Monitoring and Heat Transfer Analysis - (아크 점용접 구조물의 정밀 용접 열변형 해석에 관한 연구 (I) -온도 모니터링 및 열전달 모델 정립-)

  • 이원근;장경복;강성수;조상명
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.544-550
    • /
    • 2002
  • Arc-spot welding is generally used in joining of precise parts such as case and core in electronic compressor. It is important to control joining deformation in electronic compressor because clearance control in micrometer order is needed for excellent airtightness and anti-nose. The countermeasures far this deformation in field have mainly been dependent on the rule of try and error by operator's experience because of productivities. For control this deformation problem without influence on productivities, development of exact simulation model should be needed. In this study, to solve this deformation problem in arc-spot welded structure with case and core, we intend to make a simulation model that is able to predict deformation in precise order by tuning and feedback between sensing data and simulation results. This paper include development of heat input model for arc-spot welding, temperature monitoring and make a heat transfer model using sensing data in product.

A Study on the Effect of Pin Height on Weld Strength in Extru-Rivet Spot Welding of Aluminum Plates (알루미늄 판재의 전기저항가열 압출점접합공정에 있어서 핀의 높이가 접합강도에 미치는 영향에 관한 연구)

  • Lee, S.J.;Kim, T.H.;Jin, I.T.
    • Transactions of Materials Processing
    • /
    • v.23 no.5
    • /
    • pp.282-288
    • /
    • 2014
  • It is difficult to control welding variables during spot welding of non-ferrous metals like aluminum because of the low electrical resistance of the material. It has been suggested that a solid state welding process such as friction stir spot welding or extru-spot welding can be used to spot weld aluminum plates. In the extru-spot welding, there is a need to increase the weld strength by improving the shape of the welding die. The current study shows that the weld strength for an extru-spot welding can be increased by using a pin placed on the inside of the upper electrode in the welding die. In the current study, the deformed shape of the insert rivet and the stress distribution in the welding zone were analyzed by simulation. Extru-rivet spot welding experiments were performed by changing the height of pin on the inside of the upper electrode. From the experimental result, it is shown that the weld strength for an extru-rivet spot welding can be increased by adjusting the height of the pin. The optimal shape of the deformed rivet after the extru-rivet spot welding can be observed from the simulation results. The deformed shape of the insert rivet can also be controlled by the height of pin.

Prediction and Verification of the Twist Deformation of Automotive Structure Parts after Hybrid Welding Using CAE (CAE 를 통한 하이브리드 용접 후 차체부품 변형예측 및 검증)

  • Lee, Dug-Young;Choi, Bo-Sung;Choi, Won-Ho;Ahn, Jang-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.87-95
    • /
    • 2012
  • In recent years, laser-arc hybrid welding has begun to be adopted for assembly welding of automotive bodies and parts, because the hybrid welding process can weld lapped steel sheets having a larger gap than is possible with laser welding. In this paper, to predict the twist deformation by the hybrid welding when brackets are welded in B pillar of a passenger car, the residual stress using CAE is analyzed and the deformation result of CAE is compared with the measured deformation. First of all, after modeling heat source as intended to be expressed with laser-arc hybrid welding method, heat source fitting is done with welding conditions and a section of welding part obtained through specimen test. In case of heat source functions, laser used conical source and arc used double ellipsoid source. Through the local model analysis, elements which are located in the center of the model are selected. The elements are called WME(Welding Macro Element). This WME is extruded in the welding lines and welding phenomenon of complex parts is accomplished. The deformation amount after hybrid welding is got through a simulation, the validity of simulation is verified by measuring the panel and comparing with the simulation result.