• Title/Summary/Keyword: Welding Robot

Search Result 268, Processing Time 0.03 seconds

Development of 3D Laser Welding System (3차원 레이저 용접시스템 개발)

  • Kang H.S.;Suh J.;Lee J.H.;LEE M.Y.;Jung B.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.932-935
    • /
    • 2005
  • Three dimensional laser welding technology for light car body is studied. A robot, a seam tracking system and 4kW CW Nd:YAG laser are used for three dimensional robot laser welding system. The Laser system is used 4kW Nd:YAG laser(HL4006D) of Trumpf and the Robot system is used IRB6400R of ABB. The Seam tracking system is SMRT-20LS of ServoRobot. The welding joint of steel plate are butt and lap joint. The 3-D welding for Non-linear Tailored blank is performed after the observation experiments of bead on plate. Finally, the welding process for non-linear tailored blank and front side member is developed.

  • PDF

A Study on Welding Path Finding For The Large Structure Using Kalman Filter (칼만필터를 이용한 초대형 용접구조물의 용접선 추적에 관한 연구)

  • 주해호;이화조;김석환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.45-51
    • /
    • 2000
  • In this Paper a basic technique of gantry robot control system has been developed to weld the curved part of a large structure. A welding robot is designed to rotate torch and make the torch angle normal to the welding surface. The Kalman filter is applied to obtain the smooth welding path signal from the noised Sensing data. A welding path finding algorithm has been developed in Turbo-C language.

  • PDF

Adaptive Tracking Control of Two-Wheeled Welding Mobile Robot with Smooth Curved Welding Path

  • Bui, Trong-Hieu;Chung, Tan-Lam;Kim, Sang-Bong;Nguyen, Tan-Tien
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1682-1692
    • /
    • 2003
  • This paper proposes an adaptive controller for partially known system and applies to a two-wheeled Welding Mobile Robot (WMR) to track a reference welding path at a constant velocity of the welding point. To design the tracking controller, the errors from WMR to steel wall is defined, and the controller is designed to drive the errors to zero as fast as desired. Additionally, a scheme of error measurement is implemented on the WMR to meet the need of the controller. In this paper, the system moments of inertia are considered to be partially unknown parameters which are estimated using update laws in adaptive control scheme. The simulations and experiments on a welding mobile robot show the effectiveness of the proposed controller.

A Study on the Optimal Condition for Minimizing Spatter Generation at GMAW Robot (GMAW Robot에서 Spatter최소 발생 조건에 관한 연구)

  • Kim, Han-Sik;Han, Shin-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.2
    • /
    • pp.83-91
    • /
    • 2008
  • GMAW(Gas Metal Arc Welding) processes are usually used in industrial side in order to get its high productivity. But those are only adopted in the semi-automated welding equipment because of a lot of welding spatters. Many industrial robot actually percents from being engaged in the welding processes. The welding spatter problem of causes blocking them being a fully automated welding process.This study was carried out to investigate the optimal conditions for minimizing welding spatter generation at GMAW robot. The spatter can be significantly reduced below 2% of welding spatter generation at the following conditions ; First, below 18V at the wire-feed rate 2.0mm/min Second, below 23V at the wire-feed rate 3.6mm/min Third, below 24V at the wire-feed rate 5.5mm/min.

  • PDF

Effect of the Change of welding torch and piece arrangement by the 3-dimensional robot welding simulation (3차원 로봇용접 시뮬레이션에 의한 용접토치 및 부재배치의 변경에 따른 영향 평가)

  • 강현진;박주용;박현철;차태인;최동환
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.150-152
    • /
    • 2003
  • This simulation was carried out to estimate the process time and to improve the operation efficiency. The subassembly process consists of piece arrangement, tack welding, robot welding, manual welding and the robot welding of them was the focus of the simulation. Robot welding stage was analyzed by UML and IDEFø method, and then it was represented as the three-dimensional model(simulator) based on the analysis. The output of this simulation was the cycle time for one day's work. The cycle time for the different torch and the different piece arrangement was investigated by the 3-dimensional simulation.

  • PDF

Development of Multi-pass Welding Method for Lifting Lug by Robot Weaving (로봇 위빙에 의한 리프팅 러그 다층 용접법 개발)

  • Kim, Young-Zoo;Kim, Kang-Uk;Kim, Suk-Hyoung;Kang, Sung-Won;Kim, Soo-Ho
    • Journal of Welding and Joining
    • /
    • v.25 no.6
    • /
    • pp.44-52
    • /
    • 2007
  • A welding process of a lifting lug for lifting heavy objects is one of the important welding processes directly related to the safety in shipbuilding. Welding a lifting lug is done in the manually and takes about forty minutes. Working environment for the lifting lug welding is very poor due to an radiant heat and a harmful fume. The purpose of this study is to develop methods of multi-pass welding using the lifting lug welding robot system. This study shows robot welding methods to achieve proper corner, straight and connection welding and an effectiveness of application.

Arc welding robot controller (아크 용접 로보트 제어기)

  • 김성권;김동일;황찬영;윤명균
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.270-275
    • /
    • 1993
  • In this paper, the arc welding robot controller using a touch sensor and a arc sensor is presented. The controller is composed of robot controller parts for moving torch, and arc welding controller for welding and tracking. In the controller, an compensated data is generated to control robot trajectory and seam tracking by the arc sensor function. The data is obtained by integration of arc current. Experimental results are presented confirming the controller performance.

  • PDF

Trajectory Development of Robotic Arc Welding System for Continuous Welding of Corner Area (모서리 부위 연속 용접을 위한 아크 용접 로봇 시스템의 궤적 개발)

  • 장교근;유범상
    • Journal of Welding and Joining
    • /
    • v.14 no.6
    • /
    • pp.68-80
    • /
    • 1996
  • When a workpiece is to be arc welded around the outside corner, continuous welding without welding seam in the neighborhood of comer still remains a very difficult technique. Skilled welders weld comers by delicate“hand-eye coordination”while turning the workpiece manually, However, there is not a very clear solution to this problem in robotized arc welding process. In order to solve this problem, the coordination of a robot and a positioner with one or two axes is necessary. This paper presents a method of continuous welding around the corner of workpiece using the coordinated motion of a robot and a positioner. The positioner is either revolute jointed or prismatic jointed. In this paper, a clothoid curve is chosen for welding trajectory. The clothoid curve is excellent in connecting straight and curved weld-lines with good continuity and accommodates various welding conditions. By using this welding trajectory, the deceleration, which leads to widening of the melt and the heat affected zone, at comer area is reduced with strategic rotation of robot torch in coordination with a positioner providing smooth transition of welding torch orientation. Two types of special clothoid curves are developed for different weld slope conditions. These clothoid curves are applied to the case of linear and rotary Positioners at arc welding robot work-cell.

  • PDF

A Study on Seam Tracking for Fillet Welding using High Speed Rotating Arc Sensor (고속회전 아크센서를 이용한 필렛 용접선 추적에 관한 연구)

  • Lee, Won-Ki;Lee, Gun-You;Oh, Myung-Seok;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.917-922
    • /
    • 2003
  • In this paper, a high speed rotating arc sensor for automatic fillet welding is introduced. In order to track the welding seam, The high speed rotating arc sensor is used. The welding tip of a high speed rotating arc sensor rotates about 3000 rpm using DC motor. The rotating torch is driven by gear between welding torch body and wire guide. The welding current is measured by using the current sensor and rot at ing position sensor. To realize the welding seam tracking algorithm with accuracy, a software filter algorithm using the moving average method is applied to the measured welding current in the microprocessor. The welding mobile robot with two wheels and two sliders is developed for fillet welding. The welding mobile robot can control its traveling direction and turn itself around the corner. The effectiveness is proven through the experimental results conducted with varied fillet tracking patterns.

  • PDF

Design of controller for mobile robot in welding process of shipbuilding engineering

  • Ku, Namkug;Ha, Sol;Roh, Myung-Il
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.4
    • /
    • pp.243-255
    • /
    • 2014
  • The present study describes the development of control hardware and software for a mobile welding robot. This robot is able to move and perform welding tasks in a double hull structure. The control hardware consists of a main controller and a welding machine controller. Control software consists of four layers. Each layer consists of modules. Suitable combinations of modules enable the control software to perform the required tasks. Control software is developed using C programming under QNX operating system. For the modularizing architecture of control software, we designed control software with four layers: Task Manager, Task Planner, Actions for Task, and Task Executer. The embedded controller and control software was applied to the mobile welding robot for successful execution of the required tasks. For evaluate this imbedded controller and control software, the field tests are conducted, it is confirmed that the developed imbedded controller of mobile welding robot for shipyard is well designed and implemented.