• Title/Summary/Keyword: Welding Residual Stress Relaxation

Search Result 44, Processing Time 0.028 seconds

Fatigue Life Analysis of Butt-welded Joint with and without Postweld Heat Treatment by Local Strain Approach (국부변형률 방법을 이용한 용접후열처리 전후 시편의 피로수명 해석)

  • Lee, Dong-Hyoung;Seo, Jeong-Won;Goo, Byeong-Choon;Seok, Chang-Sung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1086-1091
    • /
    • 2003
  • The problem of residual stresses and fatigue behavior in welded structures is the main concern of welding research fields. The residual stresses and distortions of structures by welding exert negative effect on the safety of mechanical structures. Postweld heat treatment is usually carried out to relieve this residual stresses of welded joints. In this paper the influence of postweld heat treatment on fatigue life of butt-welded joint was investigated. To predict the effect of PWHT, an analytical model is developed by finite element and local strain approach and the result of fatigue life analysis is compared to experimental results. It is demonstrated that fatigue life estimates closely approximate the experimental results and PWHT provides some increase of fatigue lives in long-life fatigue region and no increase in short-life fatigue region because of the residual stress relaxation under tensile loads.

  • PDF

Butt 용접부에서 잔류응력이 피로균열성장거동에 미치는 영향에 대한 실험적 연구 1

  • 최용식;김영진;우흥식
    • Journal of Welding and Joining
    • /
    • v.6 no.4
    • /
    • pp.27-34
    • /
    • 1988
  • The objective of this paper is to investigate the effect of residual stress on fatigue crack growth behavior. For this purpose, submerged arc welding was performed on SM50A steel plate and post weld heta treatment (PWHT) was followed. Residual stress distribution on the weld plate was determined by a hole drilling method and a series of .DELTA.P-const. and .DELTA.K-decreasing fatigue test were performed on the three different regions, i.e. weld metal, HAZ and base metla. Following conclusins were achieved. 1. In "as welded" specimens, tensile residual stresses were produced in the center portion of the specimen while compressive residual stresses were produced near the edges. In PWHT specimens, however, most of the residual stresses were disappeared. 2. The fatigue crack growth behavior in low .DELTA.K region was considerably affected by the presence of residual stress in both "as welded" and PWHT specimens. 3. Because of the relaxation of residual stresses in PWHT condition, the values of m increased from 2.62-2.78 (in the "as welded" condition) to 3.57-3.91 (in the "PWHT" condition)3.91 (in the "PWHT" condition)condition)

  • PDF

FEM Analysis of Plasticity-induced Error on Measurement of Welding Residual Stress by the Contour Method

  • Shin, Shang-Hyon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1885-1890
    • /
    • 2005
  • The contour method relies on deformations that occur when a residually stressed component is cut along a plane. The method is based on the elastic superposition principle. When plasticity is involved in the relaxation process, stress error in the resulting measurement of residual stress would be caused. During the cutting the specimen is constrained at a location along the cut so that deformations are restrained as much as possible during cutting. With proper selection of the constraining location the plasticity effect can also be minimized. Typical patterns of longitudinal welding residual stress state were taken to assess the plasticity effect along with constraining locations.

Effect of Initial Shape Imperfection and Residual Stress on the Ultimate Strength of Ring-Stiffened Cylinders under Hydrostatic Pressure (수압을 받는 원환보강원통의 최종강도에 대한 초기 형상결함과 잔류응력의 영향)

  • 조상래;김승민
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.139-143
    • /
    • 2001
  • Ring-stiffened cylinders are widely used as the pressure hull of submarines and underwater vehicles. For large ring-stiffened cylinders cylindrical shells are fbricated by cold rolling of flat plates and then welding of curved shells. After forming cylinders ring-stiffeners are welded on th the cylinders. Due to these cold roiling and welding initial shape imperfections and residual stresses exists in fabricated ring-stiffened cylinders. It is well known that the initial shape and material imperfections affect the ultimate strength of ring-stiffened cylinders significantly. In this paper previous researches on the effects of initial shape imperfections and residual stresses are briefly reviewed Recently a numerical analysis computer program was developed to predict the ultimate strength of ring-stiffened cylinders subjected to hydrostatic pressure, which is based on the Dynamic Relaxation technique. This program was employed to numerically investigate those effects. The numerical predictions were substantiated with relevant experimental results.

  • PDF

Finite Element Analysis of Strain and Residual Stress in Weld Specimen (용접시편 변형률 및 잔류응력의 유한요소해석)

  • 양승용;구병춘;정흥채
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.2
    • /
    • pp.85-92
    • /
    • 2004
  • This paper consists of two parts. One is finite element analysis of the redistribution of residual stresses of weld specimen by cutting. This work is necessary to predict the actual residual stress distribution of weld specimens used in fatigue test. The other subject is to calculate the relaxation of residual stress and the strain field induced by cyclic loading. To obtain fatigue life of weldment, the value of strain amplitude at each position is necessary, for example in the strain-life approach, and the numerical results can be used to verify experimental strain measurements. Thermo mechanical finite element analyses were conducted on the commercial package ABAQUS.

Fatigue Life Analysis of Butt-welded specimen by Local Strain Approach (국부변형률방법을 이용한 용접시험편의 피로수명 해석)

  • Lee Dong-Hyong;Seo Jung-Won;Goo Byeong-choon;Seok Chang-Sung
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.73-78
    • /
    • 2003
  • The residual stresses and. distortions of structures by welding exert negative effect on the safety of railroad structures. This investigation performs a thermal elasto-plastic analysis using finite element techniques to evaluate residual stresses in butted-welded joint. Considering this initial residual stresses, local stress and strain at the critical location (weld toe) during the loading were analyzed by elastic plastic finite element analysis. Fatigue crack initiation life and fatigue crack propagation life of butt-welded specimen were predicted by local strain approach and Neuber's role and Paris law. It is demonstrated that fatigue life estimates by local strain approach closely approximate the experimental results.

  • PDF

A Study on the Prediction and Control of Angular Distortion in Thick Weldments (후판 구조의 각변형 예측 및 제어에 관한 연구)

  • 허주호;김상일
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.518-524
    • /
    • 2003
  • The block assembly of ship consists of a series of heat processes such as cutting, bending, welding, residual stress relaxation and fairing. With the fast development of computers, the thermal elasto-plastic analysis method has become a versatile tool for practical applications in the ship production. If numerical analysis is proved to be an advantageous tool to predict the residual deformation due to various heat processes, the optimum methods which can remove the welding distortion can be presented at each assembly stage, which will result in great progress in improving the accuracy of block assembly. In order to minimize the weld-induced angular distortion in thick weldments, this paper proposes the optimum groove design for various plate thickness as the distortion control method. The validity of this method has been substantiated by a number of numerical simulations and experiments.

Development of Simple Prediction Model for V-groove butt welding deformation (V-개선 맞대기 용접변형에 대한 간이 예측 모델 개발)

  • 김상일
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.2
    • /
    • pp.106-113
    • /
    • 2004
  • The block assembly of ship consists of a certain type of heat processes such as cutting, bending, welding, residual stress relaxation and fairing. The residual deformation due to welding is inevitable at each assembly stage. The geometric inaccuracy caused by the welding deformation tends to preclude the introduction of automation and mechanization and needs the additional man-hours for the adjusting work at the following assembly stage. To overcome this problem, a distortion control method should be applied. For this purpose, it is necessary to develop an accurate prediction method which can explicitly account for the influence of various factors on the welding deformation. Systematic and quantitative theoretical works to clarify the effects of various factors on the welding deformation have rarely been found. Therefore, in this paper, the effects of various factors, such as welding process and gravity on the butt welding deformation have been investigated through a number of numerical analyses. In addition, this paper proposes a simplified analysis method to predict the butt welding deformation in actual plate structure. For this purpose, a simple prediction model for butt welding deformations has been derived based on numerical and experimental results through the regression analysis. Based on these results, the simplified analysis method has been applied to some examples to show its validity.

Prediction and Control of Welding Deformation for Panel Block Structure (평 블록 구조의 용접변형 예측 및 제어)

  • Kim, Sang-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.95-99
    • /
    • 2008
  • The block assembly of ship consists of a certain type of heat processes such as cutting, bending welding residual stress relaxation and fairing. The residual deformation due to welding is inevitable at each assembly stage. The geometric inaccuracy caused by the welding deformation tends to preclude the introduction of automation and mechanization and needs the additional man-hours for the adjusting work at the following assembly stage. To overcome this problem, a distortion control method should be applied. For this purpose, it is necessary to develop an accurate prediction method which can explicitly account for the influence of various factors on the welding deformation. The validity of the prediction method must be also clarified through experiments. This paper proposes a simplified analysis method to predict the welding deformation of panel block structure. For this purpose, a simple prediction model for fillet welding deformations has been derived based on numerical and experimental results through the regression analysis. On the basis of these results, the simplified analysis method has been applied to some examples to show its validity.