• Title/Summary/Keyword: Welding Automation

Search Result 212, Processing Time 0.032 seconds

WELDING AUTOMATION TECHNOLOGIES IN SHIPBUILDING INDUSTRY

  • Lee, Gi-Ho
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.412-417
    • /
    • 2002
  • In manufacturing of ships, problems to be solved are improvement of productivity and stabilization of quality due to the shortage of skilled workers. Working environment, in particular welding environment, is also to be improved. One solution among these problems is to rationalize and automate these working. This paper is focused on the welding automation technologies in shipbuilding industry. The features of shipbuilding in the aspect of automation are described, and the main welding robot systems to be developed by SRI are introduced in each working stages.

  • PDF

Development of Multi-pass Welding Method for Lifting Lug by Robot Weaving (로봇 위빙에 의한 리프팅 러그 다층 용접법 개발)

  • Kim, Young-Zoo;Kim, Kang-Uk;Kim, Suk-Hyoung;Kang, Sung-Won;Kim, Soo-Ho
    • Journal of Welding and Joining
    • /
    • v.25 no.6
    • /
    • pp.44-52
    • /
    • 2007
  • A welding process of a lifting lug for lifting heavy objects is one of the important welding processes directly related to the safety in shipbuilding. Welding a lifting lug is done in the manually and takes about forty minutes. Working environment for the lifting lug welding is very poor due to an radiant heat and a harmful fume. The purpose of this study is to develop methods of multi-pass welding using the lifting lug welding robot system. This study shows robot welding methods to achieve proper corner, straight and connection welding and an effectiveness of application.

Automatic Pipeline Welding System with Self-Diagnostic Function and Laser Vision Sensor

  • Kim, Yong-Baek;Moon, Hyeong-Soon;Kim, Jong-Cheol;Kim, Jong-Jun;Choo, Jeong-Bog
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1137-1140
    • /
    • 2005
  • Automatic welding has been used frequently on pipeline projects. The productivity and reliability are most essential features of the automatic welding system. The mechanized GMAW process is the most widely used welding process and the carriage and band system is most effective welding system for pipeline laying. This application-oriented paper introduces new automatic welding equipment for pipeline construction. It is based on cutting-edge design and practical welding physics to minimize downtime. This paper also describes the control system which was designed and implemented for new automatic welding equipment. The system has the self diagnostic function which facilitates maintenance and repairs, and also has the network function via which the welding task data can be transmitted and the welding process data can be monitored. The laser vision sensor was designed for narrow welding groove in order to implement higher accuracy of seam tracking and fully automatic operation.

  • PDF

Development of a Intelligent Welding Carriage for Automation of Curved Block

  • Choi, H.B.;Moon, J.H.;Jun, W.R.;Kim, S.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.626-630
    • /
    • 2005
  • This paper presents a novel Intelligent-Welding-Carriage (IWC) for automation of curved block in shipbuilding. The curved block is usually used in both front and back side of the ship. In curved block root gap is big, $1{\sim}7$ [mm] and inclination, $0{\sim}30$ [deg]. Since available conventional carriage type is limited to use below root gap of 3 [mm], only manual welding is employed in curved block. To adopt an IWC in curved block, it requires control of the welding conditions, i.e., voltage, current and travel speed, with respect to root gap and inclination to achieve good welding quality. In this paper, an IWC is developed for automization of welding operation to accommodate gap and inclination. Kinematics model and dynamics using Lagrangian formulation of the manipulator is introduced. IWC utilizes a database to perform accurate welding. The database is programmed based on numerous experimental test results with respect to gap, inclination, material, travel speed, weaving condition, voltage, and current. Finally, experimental result using PID control is addressed for verify the trajectory tracking accuracy of end-effector.

  • PDF

Development of a Intelligent Welding Carriage for Automation of Curved Block (곡 블록 자동화를 위한 지능형 용접 캐리지 개발)

  • Choi HeeByoung;Moon JongHyun;Jun WanLyul;Kim Sehwan
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.171-176
    • /
    • 2005
  • This paper presents a novel Intelligent-Welding-Carriage (IWC) for automation of curved block in shipbuilding. The curved block is usually used in both front and back side of the ship. In curved block root gap is big, 1-7 (mm) and inclination, 0-30 (deg). Since available conventional carriage type is limited to use below root gap of 3 (mm), only manual welding is employed in curved block. To adopt an IWC in curved block, it requires control of the welding conditions, i.e., voltage. current, weaving speed, dwell time and travel speed, with respect to root gap and inclination to achieve good welding qualify. In this paper, an IWC is developed for automization of welding operation to accommodate gap and inclination. Kinematics model and dynamics using Lagrangian formulation of the manipulator is introduced. IWC utilizes a database to perform accurate welding. The database is programmed based on numerous experimental test results with respect to gap, inclination, material, travel speed, weaving condition, voltage, and current. Finally, experimental result using PID control is addressed for verifying the trajectory tracking accuracy of end-effector.

  • PDF

A Study on Development of Automatic Welding System by Using Multiple Welding Troches in SAW (다전극 SAW 공법을 이용한 무인 용접자동화 장치 개발에 관한 연구)

  • 정문영;김정섭;문형순;권혁준
    • Proceedings of the KWS Conference
    • /
    • 1999.10a
    • /
    • pp.43-46
    • /
    • 1999
  • It has been suggested that the motivation for automation of welding processes ncludes the replacement and extension of the functions of human operators. Among these types of the welding automation, SAW(Submerged Arc Welding) was prevalently used, because it is highly suited to a wide range of application, especially for the high speed welding. A Significant portion of the total manufacturing time for a pipe fabrication process is spent on the welding following primary machining and fit-up processes. To achieve the reliable weld bead appearance, the automatic seam tracking and adaptive control to fill the groove are urgently needed. This paper proposed the mechanical functions of multi-torches welding system, flux supply and recovery system in conjunction with the complex air pulsing method and various types of methodologies. It was shown that the multi-torches welding system revealed the high welding qualities for the circular and rectangular pipes. In conclusion, the multi-torches welding system developed will contribute the advanced welding technology, welding automation and increment of the market in these areas.

  • PDF

Development of a task level automatic programming system for arc welding automation (아아크 용접 자동화를 위한 태스크 레벨 자동 프로그래밍 시스템 개발)

  • 박현자;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1396-1399
    • /
    • 1996
  • With the progress in process automation, it becomes necessary that a robot should have various sophisticated capabilities. A robot programming language is a tool that can give a robot such capabilities without any change in robot architecture. Especially a task level automatic programming system enables a robot able to perform a job intelligently. Therefore anyone who is not an expert on welding or robot programming can easily use it. In this research, basic automatic welding program is combined with workspace information, which makes users do an arc welding job automatically.

  • PDF

RECENT DEVELOPMENTS OF WELDING AUTOMATION AND ROBOTICS IN SHIPBUILDING

  • Jukka, Gustafsson;Mikko, Veikkolainen
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.732-736
    • /
    • 2002
  • The introduction of newly developed intelligent and user-friendly robotics has opened a new era in shipbuilding. Together with traditional and low-cost mechanization a record level of welding automation rate has been achieved in the construction of cruise vessels. In the paper modem applications and recent developments of welding automation and robotics in shipbuilding have been described and some forecast for the future trends are given. Development in the field of shipyards will be continued with accelerated speed and we shall have interesting prospects for the near future. New laser techniques can boost the shipyards in a revolutional way when production is rapidly changing, materials will be lighter and quality demands are becoming more strict.

  • PDF

Integrated Operating System For Welding Automation on Assembly Line At Shipyards (대조립 블럭 용접 자동화를 위한 통합 운영 시스템)

  • Kim, Byung-Su;Rhee, Si-Youl;Kim, Eun-Jung;Park, Jin-Hyung;Park, Young-Jun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1752-1756
    • /
    • 2003
  • Welding automation in shipbuilding process, especially in the assembly line is considered to be a difficult job because welding part is too huge , various and unstructured for a welding robot to weld the whole part automatically. We developed an automatic welding robot to improve those difficult process. This paper show how to systematically operate the integrated automation system which consists of several robots. We introduce our software and system integration method. Specially we focus that network communication and operating process. The developed system visualizes the operation environment using Open Inventor and communicates with the entire system via TCP/IP and FTP.

  • PDF

OPTIMISATION OF MANUAL WELDS USING VIRTUAL AND AUGMENTED REALITY

  • Tschirner, Petra;Graser, Axel
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.289-294
    • /
    • 2002
  • This paper presents first results of an interdisciplinary research project for the development of an "intelligent" welding helmet. Contrary to conventional welding helmets the system allows a detailed observation both of the welding process and the environment. By methods of virtual and augmented reality additional information can be supplied to the welder. The system can be used for welding preparation, welding process observation and quality assurance.

  • PDF