• Title/Summary/Keyword: Welding Assembly

Search Result 232, Processing Time 0.021 seconds

A Study on the Development of a Program for Predicting Successful Welding of Electric Vehicle Batteries Using Laser Welding (레이저 용접을 이용한 전기차 배터리 이종접합 성공 확률 예측 프로그램 개발에 관한 연구)

  • Cheol-Hwan Kim;Chan-Su Moon;Kwan-Su Lee;Jin-Su Kim;Ae-Ryeong Jo;Bo-Sung Shin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.44-49
    • /
    • 2023
  • In the global pursuit of carbon neutrality, the rapid increase in the adoption of electric vehicles (EVs) has led to a corresponding surge in the demand for batteries. To achieve high efficiency in electric vehicles, considerations of weight reduction and battery safety have become crucial factors. Copper and aluminum, both recognized as lightweight materials, can be effectively joined through laser welding. However, due to the distinct physical characteristics of these two materials, the process of joining them poses technical challenges. This study focuses on conducting simulations to identify the optimal laser parameters for welding copper and aluminum, with the aim of streamlining the welding process. Additionally, a Graphic User Interface (GUI) program has been developed using the Python language to visually present the results. Using machine learning image data, this program is anticipated to predict joint success and serve as a guide for safe and efficient laser welding. It is expected to contribute to the safety and efficiency of the electric vehicle battery assembly process.

Fatigue Characteristics of Laser Welded Zirconium Alloy Thin Sheet (레이저 용접된 박판 지르코늄 합금의 피로특성)

  • Jeong, Dong-Hee;Kim, Jae-Hoon;Yoon, Yong-Keun;Park, Joon-Kyoo;Jeon, Kyeong-Rak
    • Journal of Welding and Joining
    • /
    • v.30 no.1
    • /
    • pp.59-63
    • /
    • 2012
  • The spacer grid is one of the main structural components in a fuel assembly. It supports fuel rods, guides cooling water and maintains geometry from external impact load and cyclic stress by the vibration of nuclear fuel rod, it is necessary to have sufficient strength against dynamic external load and fatigue strength. In this study, the mechanical properties and fatigue characteristics of laser beam welded zircaloy thin sheet are examined. The material used in this study is a zirconium alloy with 0.66 mm of thickness. The fatigue strength under cyclic load was evaluated at stress ratio R=0.1. S-N curves are presented with statistical testing method recommend by JSME- S002 and compared with S-N curves at R.T. and $315^{\circ}C$. As a result of the experimental approach, the design guide of fatigue strength is proposed and the results obtained from this study are expected to be useful data for spacer gird design.

Design and Making of a Handmade Vehicle with a Formula in 2016 (2016 포뮬러 형태의 자작자동차 설계 및 제작)

  • Kim, Jin-Seok;Shin, Dae-Soo;Shin, Min-Soo;Kim, Seong Keol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.82-88
    • /
    • 2017
  • In 2016, a handmade vehicle called to the VF-3 was designed and manufactured as a formula typed car. Prior to manufacturing and assembly, the impact attenuator was analyzed through ANSYS LS-DYNA, and the results were applied to the VF-3. The dynamical performance of the VF-3, such as the acceleration and circling simulations, was also assessed through MSC-ADAMS. The results were applied and compared after the Korean Society of Automotive Engineers (KSAE) competition. There was only a 0.8 s difference in the acceleration test. In order that the frame was not twisted by thermal deformation, Argon-TIG welding was used and a zig was designed. Another zig was designed to have the exact position for the hardpoints in the suspension system. Most of the parts were made with aluminum 7050 for reduced weight. The VF-3 won the third prize in the 2016 KSAE Student Handmade Vehicle competition.

Process Development for Automotive Hybrid Hood using Magnesium Alloy AZ31B Sheet (마그네슘 합금 AZ31B 판재를 이용한 자동차 하이브리드 후드 개발 프로세스)

  • Jang, D.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.160-166
    • /
    • 2011
  • Weight reduction while maintaining functional requirements is one of the major goals in the automotive industry. The use of lightweight magnesium alloys offers great potential for reducing weight because of the low density of these alloys. However, the formability and the surface quality of the final magnesium alloy product for auto-body structures are not acceptable without a careful optimization of the design parameters. In order to overcome some of the main formability limitations in the stamping of magnesium alloys, a new approach, the so-called "hybrid technology", has been recently proposed for body-in-white structural components. Within this approach, necessary level of mechanical joining can be obtained through the use of lightweight material-steel adhesion promoters. This paper presents the development process of an automotive hybrid hood assembly using magnesium alloy sheets. In the first set of material pairs, the selected materials are magnesium alloy AZ31B alloy and steel(SGCEN) as inner and outer panels, respectively. In order to optimize the design of the inner panel, the stamping process was analyzed with the finite element method (FEM). Laser welding by CW Nd:YAG were used to join the magnesium alloy sheets. Based on the simulation results and mechanical test results of the joints, the determination of die design variables and their influence on formability were discussed. Furthermore, a prototype based on the proposed design was manufactured and the static stiffness test was carried out. The results demonstrate the feasibility of the proposed hybrid hood with a weight reduction of 25.7%.

Connector Design in Press Forming Process to Prevent Frame Twisting of Metal Front Case for Mobile Phone (휴대폰용 금속 프론트 케이스의 프레스 성형공정에서 프레임의 형상오차 저감을 위한 연결부 형상설계)

  • Lee, I.K.;Lee, C.J.;Son, Y.K.;Lee, J.M.;Kim, D.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.104-109
    • /
    • 2011
  • The metal front case of a mobile phone is manufactured by press forming and welding of thin metal sheets. Twisting of the frame after the forming process is one of main obstacle for the assembly with reinforcement by welding. This study introduces a method preventing twisting of the metal front case frame in press forming. The spring-back after forming produces twisting of the frame, which leads to a low structural stiffness. To reduce twisting, connectors are required to reinforce the structural stiffness of the frame. In this study, the twisting profile is evaluated using a finite element(FE) analysis for various connector shapes. The actual connector shape is determined by minimization of the frame twisting within the tolerance of the FE-analysis. To verify the validity of the proposed blank shape, a forming experiment is performed and the twisting profile is measured using a 3D laser scanning method. The dimensional accuracy is found to be within the tolerance and in good agreement with the FE-analysis.

Reliability of Fine Pitch Solder Joint with Sn-3.5wt%Ag Lead-Free Solder (Sn-3.5wt%Ag 비납솔더를 이용한 미세피치 솔더접합부의 신뢰성에 관한 연구)

  • 하범용;이준환;신영의;정재필;한현주
    • Journal of Welding and Joining
    • /
    • v.18 no.3
    • /
    • pp.89-96
    • /
    • 2000
  • As solder becomes small and fine, the reliability and solderability of solder joint are the critical issue in present electronic packaging industry. Besides the use of lead(Pb) containing solders for the interconnections of microelectronic subsystem assembly and packaging has enviromental problem. In this study, using Sn/Pb and Sn/Ag eutectic solder paste, in order to obtain decrease of solder joint strength with increasing aging time, initial solder joint strength and aging strength after 1000 hour aging at $100^{\circ}C$ were measured by peel test. And in order to obtain the growth of intermetallic compound(IMC) layer thickness, IMC layer thickness was measured by scanning electron microscope(SEM). As a result, solder joint strength was decreased with increasing aging time. The mean IMC layer thickness was increased linearly with the square root of aging time. The diffusion coefficient(D) of IMC layer was found to $1.29{\times}10^{-13}{\;}cm^2/s$ at using Sn/Pb solder paste, 7.56{\times}10^{-14}{\textrm}{cm}^2/s$ at using Sn/Ag solder paste.

  • PDF

A new replaceable fuse for moment resisting frames: Replaceable bolted reduced beam section connections

  • Ozkilic, Yasin O.
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.353-370
    • /
    • 2020
  • This paper describes a new type of replaceable fuse for moment resisting frames. Column-tree connections with beam splice connections are frequently preferred in the moment resisting frames since they eliminate field welding and provide good quality. In the column-tree connections, a part of the beam is welded to the column in the shop and the rest of the beam is bolted with the splice connection in the field. In this study, a replaceable reduced beam section (R-RBS) connection is proposed in order to eliminate welding process and facilitate assembly at the site. In the proposed R-RBS connection, one end is connected by a beam splice connection to the beam and the other end is connected by a bolted end-plate connection to the column. More importantly is that the proposed R-RBS connection allows the replacement of the damaged R-RBS easily right after an earthquake. Pursuant to this goal, experimental and numerical studies have been undertaken to investigate the performance of the R-RBS connection. An experimental study on the RBS connection was used to substantiate the numerical model using ABAQUS, a commercially available finite element software. Additionally, five different finite element models were developed to conduct a parametric study. The results of the analysis were compared in terms of the moment and energy absorption capacities, PEEQ, rupture and tri-axiality indexes. The design process as well as the optimum dimensions of the R-RBS connections are presented. It was also demonstrated that the proposed R-RBS connection satisfies AISC criteria based on the nonlinear finite element analysis results.

A study on development of plasma-arc cutting system with computer-numerical control (컴퓨터수치제어(CNC) 플라즈마 아아크 절단장치 개발에 관한 연구)

  • 노태정;나석주;나규환
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.60-69
    • /
    • 1990
  • Plasma arc cutting is a fusion cutting process in which a gas-constricted arc is employed to produce a high-temperature, high-velocity plasma jet on the workpiece. This process provides some advantages such as increased cutting velocity, excellent working accuracy and the ability to cut special materials (widely used stainless steels and Al-alloys, for example), when compared with iconventional oxyfuel gas cutting. From the view point of price and reliability of the power source, plasma arc cutting has also some distinct advantages over laser beam cutting. High-speed machines with NC or CNC systems are needed for the plasma arc or laser beam cutting process, while for oxyfuel gas cutting, low-speed machines with copying templates or optical-shape tracking sensors can be applied. The low price and high flexibility of the microprocessor arc contributing more and more the application of CNC system in the plasma arc cutting process, as in other manufacturing fields. From these points of view, a microprocessor-based plasma arc cutting system was developed by using a reference-pulse system, and its performance was tested. The interpolating routines were programmed in the assembly language for saving the memory volume and improving the compouting speed, which has an intimate relationship with the available cutting velocity.

  • PDF

GMAW of 6K21-T4 Aluminum Alloy for Tailor Welded Blank(TWB) (TWB 적용을 위한 6천계열 알루미늄 합금의 GMA용접)

  • Kim, Yong;Yang, Hyun-Seok;Park, Ki-Young;Seo, Jong-Dock;Choi, Won-Ho
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.50-50
    • /
    • 2009
  • 본 연구에서는 차체 부품의 경량소재 대체에 따른 Panel Assembly Rear Seat Back 부품 제작에 최신 저입열 미그용접공정을 적용한 TWB(Tailor Welded Blank) 공정기술을 확보하기 위해 최적 용접조건 도출에 관한 연구를 진행하였다. 용접 후 성형이 이뤄지는 제조공정의 특성 상 성형강도에 중점을 둔 실험을 진행하였으며, 이를 위해 각 와이어에 따른 용접부의 기계/금속학적 특성이 평가되었다. 대상 시편은 6천계열 열처리형 합금이며, 두께는 각각 1.6t, 1.4t로 이를 맞대기 용접 후 그 특성을 평가하였다. 용접은 저입열 GMA용접 공법 중 하나인 CMT 용접법(Cold Metal Transfer)을 사용하였으며, 평가 대상 와이어로는 4043, 4047, 5183 및 5356이 사용되었다. 특성평가는 마크로 및 마이크로 조직, 경도, 인장강도, 기공 및 결함, 성형강도 등에 대해 이뤄졌으며, 희석된 와이어의 조성이 용접부 특성에 미치는 영향에 대해서도 검토되었다. 실험 결과, 5천계열 와이어가 성형강도에 비교적 더 강인한 결과를 나타냈으며 성형강도는 용접조건 및 초기 갭에 대한 영향은 받았으나, 비드형상과 강도간의 연관성은 찾을 수 없었다. 이에 따라 TWB 적용을 위한 와이어로는 5356이 가장 우수한 것으로 판명되었다.

  • PDF

Optimum Structural Design of D/H Tankers by using Pareto Optimal based Multi-objective function Method (Pareto 최적점 기반 다목적함수 기법에 의한 이중선각유조선의 최적 구조설계)

  • Na, Seung-Soo;Yum, Jae-Seon;Han, Sang-Min
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.284-289
    • /
    • 2005
  • A structural design system is developed for the optimum design of double hull tankers based on the multi-objective function method. As a multi-objective function method, Pareto optimal based random search method is adopted to find the minimum structural weight and fabrication cost. The fabrication cost model is developed by considering the welding technique, welding poses and assembly stages to manage the fabrication man-hour and process. In this study, a new structural design is investigated due to the rapidly increased material cost. Several optimum structural designs on the basis of high material cost are carried out based on the Pareto optimal set obtained by the random search method. The design results are compared with existing ship, which is designed under low material cost.