• Title/Summary/Keyword: Welding Assembly

Search Result 232, Processing Time 0.019 seconds

Welding Quality Evaluation on the LASER Welding Parts of the Zircaloy Spacer Grid Assembly for PWR Fuel Assembly(III) (경수로 원전연료용 질칼로이 지지격자체의 LASER 용접품질 평가(III))

  • Song Gi-Nam;Yun Gyeong-Ho;Lee Gang-Hui;Kim Su-Seong;Han Hyeong-Jun
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.42-44
    • /
    • 2006
  • A spacer grid assembly, which is an interconnected array of slotted grid straps and is welded at the intersections to form an egg crate structure, is one of the main structural components of the nuclear fuel assembly for pressurized water reactors(PWRs). The spacer grid assembly is structurally required to have enough buckling strength under various kinds of lateral loads acting on the nuclear fuel assembly so as to keep the nuclear fuel assembly straight. To meet this requirement, it is necessary to weld the welding parts carefully and precisely. In this study, a series of welding tests were carried out to find an optimum welding condition. After examining and analyzing the specimens welded from the welding conditions, a recommendable laser welding condition was selected for the KAERI designed Zircaloy spacer grid assembly.

  • PDF

Welding Quality Evaluation on the LASER Welding Parts of the Spacer Grid Assembly for PWR Fuel Assembly (경수로 원전연료용 지지격자체의 LASER 용접부위 평가)

  • Song Gi Nam;Yun Gyeong Ho;Gang Heung Seok;Lee Gang Hui;Kim Su Seong
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.67-69
    • /
    • 2004
  • The fuel assemblies as the nuclear fuel for the pressurized water reactor(PWR) are loaded in the reactor core throughout the residence time of three to five years. The spacer grid assembly, which is an interconnected array of slotted grid straps and is welded at the intersections to form an egg crate structure, is one of the main structural components of the fuel assembly. The spacer grid assembly is structurally required to have enough buckling strength under various kinds of lateral load acting on the fuel assembly so as to keep the fuel assembly straight. To meet the requirement, integrity on the spacer grid welding parts should be carefully checked. In this study, welding quality of the spacer grid assembly welded by several welding companies are examined and compared.

  • PDF

Welding Quality Evaluation on the LASER Welding Parts of the Spacer Grid Assembly for PWR fuel Assembly (경수로 원전연료용 지지격자의 LASER 용접품질 평가)

  • Song, Gi-Nam;Yun, Jeong-Ho;Gang, Hong-Seok;Lee, Gang-Hui;Kim, U-Gon;Kim, Su-Seong
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.109-111
    • /
    • 2005
  • Nuclear fuel assemblies for pressurized water reactors(PWR) are loaded in the reactor core throughout the residence time of three to five years. A spacer grid assembly, which is an interconnected array of slotted grid straps and is welded at the intersections to form an egg crate structure, is one of the main structural components of the nuclear fuel assembly. The spacer grid assembly is structurally required to have enough buckling strength under various kinds of lateral loads acting on the nuclear fuel assembly so as to keep the nuclear fuel assembly straight. To meet this requirement, it is necessary to weld the welding parts carefully and precisely. In this study, laser welding qualities of the spacer grid assembly welded by several welding companies, such as weld strength, weld penetration depth, and weld bead size, are examined and compared.

  • PDF

Development of a High Strength Manufacturing Technology for the Shock Absorber Base Assembly Using Friction Welding (마찰용접을 이용한 고강도 쇼크업소버 베이스 어셈블리의 제조 기술 개발)

  • Chung, Ho-Yeon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.1
    • /
    • pp.90-96
    • /
    • 2011
  • The shock absorber base assembly is one of the parts in the shock absorber equipment that controls the vehicle movement. It absorbs the shock and vibration to guarantee riding stability and comfort. It demands strength, reliability and strict airtightness of the welded section because the shock absorber base assembly is a container which resists pressure and needs durability by being filled with gas and oil. However, the current engineering needs a lot of production time, has a high cost and shows a low production rate. These problem due to the eight production processes, four of which are spot welding, reinforcement welding like metal active welding (MAG), prior process of the base assembly cap and tube for precision and pressing. We will analyze the manufacturing processes of the base assembly and suggest an improved manufacturing method that uses frictional welding. The results will show that the new method of the frictional welding is better than the previous welding technique. Through the use of this concept of frictional welding, the welding conjunction will be strengthened, measurements will be more precise, and the cost and the number of processes will be reduced.

Ship block assembly sequence planning considering productivity and welding deformation

  • Kang, Minseok;Seo, Jeongyeon;Chung, Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.4
    • /
    • pp.450-457
    • /
    • 2018
  • The determination of assembly sequence in general mechanical assemblies plays an important role in terms of manufacturing cost, duration and quality. In the production of ships and offshore plants, the consideration of productivity factors and welding deformation is crucial in determining the optimal assembly sequence. In shipbuilding and offshore industries, most assembly sequence planning has been done according to engineers' decisions based on extensive experience. This may result in error-prone planning and sub-optimal sequence, especially when dealing with unfamiliar block assemblies composed of dozens of parts. This paper presents an assembly sequence planning method for block assemblies. The proposed method basically considers geometric characteristics of blocks to determine feasible assembly sequences, as well as assembly process and productivity factors. Then the assembly sequence with minimal welding deformation is selected based on simplified welding distortion analysis. The method is validated using an asymmetric assembly model and the results indicate that it is capable of generating an optimal assembly sequence.

Welding Quality Analysis on the Welding Parts of the Zircaloy Spacer Grid Assembly for PWR Fuel Assembly (경수로 원전연료용 지르칼로이 지지격자체의 용접품질 분석)

  • Song, Gi-Nam;Kim, Su-Seong;Han, Hyeong-Jun
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.125-127
    • /
    • 2006
  • A spacer grid assembly, which is an interconnected array of slotted grid straps and is welded at the intersections to form an egg crate structure, is one of the main structural components of the nuclear fuel assembly for pressurized water reactors(PWRs). The spacer grid assembly is structurally required to have enough buckling strength under various kinds of lateral loads acting on the nuclear fuel assembly so as to keep the nuclear fuel assembly straight. To meet this requirement, it is necessary to weld the welding parts carefully and precisely. In this study, weld qualities such as, weld bead size, penetration, spatter, etc. manufactured by various welders were compared and analyzed. Comparison results show that the weld qualities could be improved by selecting the optimal welding condition and also improving the welding technique.

  • PDF

Experimental Study of New Welding Assembly Technology Applied with Mixed-Model Production Method (혼류생산 방식을 적용한 신개념 용접조립 기술 연구)

  • Park, Dong Hwan;Gu, Ja Jun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.602-608
    • /
    • 2014
  • Mixed-model production lines are often used in manufacturing systems. In production lines, different product types are simultaneously manufactured by processing small batches. This paper describes a new welding assembly technology involving the development of experimental models for a mixed-model production line in an automobile company. Due to the extensive number of models, the design of a welding assembly system is complicated. Performance evaluation is an important phase in the design of welding assembly lines in a mixed-model production environment. In this study, a new welding assembly technology for a mixed-model production method was used to weld the package tray and dash panel of a vehicle.

DEVELOPMENT OF DIGITAL LASER WELDING SYSTEM FOR AUTOMOBILE SIDE PANELS

  • Park, H.S.;Lee, G.B.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.83-91
    • /
    • 2007
  • Nowadays, the increasing global competition forces manufacturing enterprises to apply new technologies such as laser welding to manufacturing of their products. In case of automotive industries, they interest in assembly system for BIW (Body in White) carrying out laser welding. In this paper, the method of implementation for digital laser welding assembly system is proposed. Based on the requirements of assembly tasks obtained through product analysis, process modeling is executed by using the IDEF0 and UML model. For digital assembly system, the selected components are modeled by using 3D CAD tools. According to the system configuration strategy, lots of the alternative solutions for the assembly system of welding side panels are generated. Finally, the optimal laser welding system is chosen by the evaluation of the alternative solutions with TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method.

Position Estimation of Welding Panels for Sub-Assembly Welding Line in Shipbuilding using Camera Vision System (조선 소조립 용접자동화의 부재위치 인식을 위한 카메라 시각 시스템)

  • 전바롬;윤재웅;김재훈
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.344-352
    • /
    • 1999
  • There has been requested to automate the welding process in shipyard due to its dependence on skilled operators and the inferior working environments. According to these demands, multiple robot welding system for sub-assembly welding line has been developed, realized and installed at Keoje shipyard. In order to realize automatic welding system, robots have to be equipped with a sensing system to recognize the position of the welding panels. In this research, a camera vision system(CVS) is developed to detect the position of base panels for sub-assembly line in shipbuilding. Two camera vision systems are used in two different stages (fitting and welding) to automate the recognition and positioning of welding lines. For automatic recognition of panel position, various image processing algorithms are proposed in this paper.

  • PDF

Welding Quality Evaluation on the LASER Welding Parts of the Zircaloy Spacer Grid Assembly for PWR Fuel Assembly(II) (경수로 원전연료용 질칼로이 지지격자체의 LASER 용접품질 평가(II))

  • Song, Gi-Nam;Yun, Gyeong-Ho;Lee, Gang-Hui;Kim, Su-Seong;Han, Hyeong-Jun
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.70-72
    • /
    • 2005
  • Nuclear fuel assemblies for pressurized water reactors(PWR) are loaded in the reactor core throughout the residence time of three to five years. A spacer grid assembly, which is an interconnected array of slotted grid straps and is welded at the intersections to form an egg crate structure, is one of the main structural components of the nuclear fuel assembly. The spacer grid assembly is structurally required to have enough buckling strength under various kinds of lateral loads acting on the nuclear fuel assembly so as to keep the nuclear fuel assembly straight. To meet this requirement, it is necessary to weld the welding parts carefully and precisely. In this study, laser welding qualities of the Zircaloy spacer grid assembly welded by two welding companies, such as weld strength, weld penetration depth, and weld bead size, are examined and compared.

  • PDF