• Title/Summary/Keyword: Welding Analysis

Search Result 1,788, Processing Time 0.035 seconds

Recent Corrosion Research Trends in Weld Joints

  • Kim, Hwan Tae;Kil, Sang Cheol;Hwang, Woon Suk
    • Corrosion Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.74-76
    • /
    • 2007
  • The increasing interest in the corrosion properties of weld joints in the corrosive environment is placing stringent demands on the manufacturing techniques and performance requirements, and the manufacture employs the high quality and efficiency welding process to produce welds. Welding plays an important role in the fabrication of chemical plants, nuclear power plant, ship construction, and this has led to an increasing attention to the corrosion resistant weld joints. This paper covers a recent technical trends of welding technologies for corrosion resistance properties including the COMPENDEX DB analysis of welding materials, welding process, and welding fabrications.

Analysis of Friction Stir Welding Process of Mg alloy by Computational Fluid Dynamics (유동 해석을 통한 마그네슘 합금의 마찰교반용접 분석 연구)

  • Kim, Moosun;Sun, Seung-Ju;Kim, Jung-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.679-684
    • /
    • 2017
  • Friction Stir Welding is a metal welding technique, in which friction heat between a welding tool and a welding material is used to weld parts at temperatures below the melting point of a material. In this study, the temperature and velocity changes in a magnesium alloy (AZ31) during the welding process were analyzed by computational flow dynamics technique while welding the material using a friction stir welding technique. For the analysis, the modeling and analysis were carried out using Fluent as a fluid analysis tool. First, the welding material was assumed to be a temperature-dependent Newtonian fluid with high viscosity, and the rotation region and the stationary region were simulated separately to consider the rotational flow generated by the rotation of the welding tool having a helical groove. The interface between the welding tool and welding material was given the friction and slip boundary conditions and the heat transfer effect to the welding tool was considered. Overall, the velocity and temperature characteristics of the welded material according to time can be understood from the results of transient analysis through the above flow analysis modeling.

Residual Stress and Fracture Analysis of Thick Plate for Partial Penetration Multi-pass Weldment (후판 부분용입 다층용접의 잔류음력 및 파괴 해석)

  • Kim, Seok;Shim, Yong-Lae;Bae, Sung-In;Song, Jung-Il
    • Journal of Welding and Joining
    • /
    • v.19 no.6
    • /
    • pp.636-642
    • /
    • 2001
  • Partial penetration welding joint defines the groove welds that applies the one side welding which does not use steel backing and both side welding without back gouging, that is, the partial penetration welding joint leaves an unwelded portion at the root of the welding area. In this study, we analyzed the residual stress and fracture on the thick metal plates that introduced the partial penetration welding method. As results of using above mentioned welding method, we could draw a conclusion that longitudinal stress and traverse stress occurred around the welding area was so minimal and did not affect any influence. We also performed the fracture behavior evaluation on the partial penetration multi-pass welding with 25.4mm thick plate by using theJ-integral, which finally led us the conclusion that the partial penetration multi -pass welding method is more applicable and effective in handling the root face with less than 6.35mm.

  • PDF

Analysis of Welding Distortion during the Production of Fuel Tanks for Excavators (연료탱크 제작시 시뮬레이션을 통한 용접변형 해석)

  • Yang, Young-Soo;Kim, Duck-Youn;Bae, Kang-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.24-34
    • /
    • 2016
  • To attach a fuel tank to an excavator, two sets of mounting plates on which three bosses are attached are welded onto the tank. In this study, the welding process of a fuel tank for an excavator was modeled using a finite element numerical method. The tank was modeled as a simple plate to which the mounting plate or bosses were attached by fillet welding. Thermal and thermo-elasto-plastic analyses of the welding process were carried out to predict the temperature distribution and material distortion during welding, respectively. Three different welding sequences for the tank were also modelled to compare the deformation that occurred due to each welding sequence. The results of the analysis predicted that changing the welding sequence around the mounting plate could not position the boss within the allowable dimensional range. The results also revealed the sequence in which the maximum distortion of the bosses welded onto the tank was 30% less than the maximum distortion due to the other sequences.

Study on the Simultaneous Control of the Seam tracking and Leg Length in a Horizontal Fillet Welding Part 1: Analysis and Measurement of the Weld Bend Geometry

  • Moon, H.S.;Na, S.J.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.23-30
    • /
    • 2001
  • Among the various welding conditions, the welding current that is inversely proportional to the tip-to-work-piece distance is an essential parameter as to monitor the GMAW process and to implement the welding automation. Considering the weld pool surface geometry including weld defects, it should modify the signal processing method for automatic seam tracking in horizontal fillet welding. To meet the above necessities, a mathematical model related with the weld pool geometry was proposed as in a conjunction with the two-dimensional heat flow analysis of the horizontal fillet welding. The signal processing method based on the artificial neural network (Adaptive Resonance Theory) was proposed for discriminating the sound weld pool surface from that with the weld defects. The reliability of the numerical model and the signal processing method proposed were evaluated through the experiments of which showed that they are effective for predicting the weld bead shape with or without the weld defects in a horizontal fillet welding.

  • PDF

A Study on Welding Deformation of I-Beam Steel Structure by FEM Method (유한요소법에 의한 I형빔의 용접변형에 관한 연구)

  • 석한길
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.561-567
    • /
    • 2003
  • For construction of I-beam steel structures, a fillet welding is one of the main manufacturing process. However, this welding process cause some problems associated with welding residual stress and welding deformation that are harmful to the safety of structures. Accordingly, this study clarified the creation mechanism of the welding deformation on I-beam steel structure from the experimental results given by the FEM method. To prevent or minimize the longitudinal bending deformation, first of all, a field supervision is necessary to observe the optimal groove design. Secondly, the welding order for cooling weld zone is needed.

FINITE ELEMENT ANALYSIS AND MEASUREMENT ON THE RELEASE OF RESIDUAL STRESS AND NON-LINEAR BEHAVIOR IN WELDMENT BY MECHANICAL LOADING(I) -FINITE ELEMENT ANALYSIS-

  • Jang, Kyoung-Bok;Kim, Jung-Hyun;Cho, Sang-Myoung
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.378-383
    • /
    • 2002
  • In previous study, the decrease and recovery of total stiffness in welded structure was discussed on the basis of experimental examination through tensile loading and unloading test of welded specimen. The recovery of structure stiffness was caused by the release of welding residual stress through mechanical loading. In this study, analysis model that is indispensable for the effective application of MSR method was established on the basis of test and measurement result. Thermal elasto-plastic analysis for welding process was performed by non-coupled analysis. Analysis results of welding process were transfer to elasto-plastic model for tensile loading & unloading by restart technique. In elasto-plastic analysis model for mechanical loading & unloading, hardening appearance of weld metal was considered by rezoning technique and tying technique was used for JIG condition of test machine.

  • PDF

Analysis on behavior of keyhole and plasma using photodiode in laser welding of aluminum 6000 alloy (포토 다이오드를 이용한 6000계열 알루미늄 합금의 레이저 용접에서 키홀 및 플라즈마의 거동 해석)

  • Park Y. W.;Park H. S.;Rhee S. H.
    • Laser Solutions
    • /
    • v.7 no.3
    • /
    • pp.11-24
    • /
    • 2004
  • In automotive industry, light weight vehicle is one of issues because of the air pollution and the protection of environment. Therefore, automotive manufacturers have tried to apply light materials such as aluminum to car body. Aluminum welding using laser has some advantages high energy density and high productivity. It is very important to understand behavior of plasma and keyhole in order to improve weld quality and monitor the weld state. In this study, spectral analysis was carried out to verify the spectrum for plasma which is generated in laser welding of A 6000 aluminum alloy. Two photodiodes which cover the range of plasma wavelength was used to measure light emission during laser welding according to assist gas flow rate and welding speed. Analysis of relationship between sensor signals of welding variables and formation of keyhole and plasma is performed. To determine the level of significance, analysis of variation (ANOVA) was carried out.

  • PDF

The Thermal Elasto-plastic Analysis Using Layered Shell Element (적층 쉘 요소를 이용한 용접 열탄소성 해석)

  • Song, H.C.;Yum, J.S.;Jang, C.D.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.220-224
    • /
    • 2005
  • The thermal elasto-plastic analysis for the prediction of welding distortion of a 3 dimensional large-scaled ship structure is a very time-consuming work since the analysis is a nonlinear problem, and a lot of finite elements are needed to simulate the large ship hull block. Generally, 3-D finite elements have been used in the 3-D welding distortion problem to assess precisely the temperature gradient through the thickness direction of the welding plate. As a result of the adoption of 3-D element, degrees of freedom are rapidly increased in the problem to be solved. In this study, to improve the time efficiency of welding thermal elasto-plastic analysis, a layered shell element was proposed to simulate 3-D temperature gradient, and the results were compared with the experiment. The experiments were carried out for the type of bead-on-plate welding, and we found the measured data have a good agreement with the FEA results.

  • PDF

A Study on Weldment Boundary Condition for Elasto-Plastic Thermal Distortion Analysis of Large Welded Structures (대형 용접구조물의 탄소성 열변형 해석을 위한 용접부의 변형률 경계조건에 관한 연구)

  • Ha, Yun-Sok
    • Journal of Welding and Joining
    • /
    • v.29 no.4
    • /
    • pp.48-53
    • /
    • 2011
  • A thermal distortion analysis which takes strains directly as boundary conditions removed barrier of analysis time for the evaluation of welding distortion in a large shell structure like ship block. If the FE analysis time is dramatically reduced, the structure modeling time or the input-value calculating time will become a new issue. On the contrary to this, if the calculation time of analysis input-value is dramatically reduced and its results also are more meaningful, a little longer analysis time could be affirmative. In this study, instead of using inherent strain based on elastic analysis, a thermal strain based on elasto-plastic analysis is used as the boundary condition of weldments in order to evaluate the welding distortion. Here, the thermal strain at the weldment was established by using a stress-strain curve established from the test results. It is possible to automatically recognize the modeling induced-stiffness in the shrinkage direction of welded or heated region. The validity of elasto-plastic thermal distortion analysis was verified through the experiment results with various welding sequence.