• Title/Summary/Keyword: Welding Information

Search Result 275, Processing Time 0.032 seconds

High-efficiency repair welding technology for marine engine components (선박엔진 부품의 고능률 보수용접기술)

  • Kim, Young-Sik;Kil, Sang-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.21-30
    • /
    • 2017
  • Of the marine engine components, the piston crown and exhaust valve are repaired most frequently. These works are conducted through conventional welding processes such as GTAW or SAW, domestically in marine engine repair factories. New high-efficiency welding or overlay processes such as tandem SAW, tandem MAG, hybrid TIG-MIG welding, pulsed-GMAW, CMT welding, and super TIG welding have been developed recently. Moreover, the plasma transfered arc (PTA) process is an efficient spray method for overlaying on the exhaust valve. In this review paper, the new high-efficiency repair welding methods are introduced for marine engine components. The problems due to repair welding for marine engine components are also presented.

Relationship Between Tool Rotating Speed and Properties of Friction Stir Welded Al 6005-T6 (알루미늄 합금 (Al6005-T6)의 마찰교반접합 시 공구의 회전속도와 접합 특성의 상관관계 연구)

  • Choi, Dooho
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.7
    • /
    • pp.94-99
    • /
    • 2019
  • Friction stir welding was first reported by TWI(The Welding Institute) in 1991, and this welding method has been rapidly used in various industrial areas such railway, automobile, aerospace and shipbuilding industry. Here, we study core characteristics of friction stir welding (FSW) applied to Al 6005-T6 extruded sheets, which is the typical alloy used for railway car bodies. With the fixed welding speed of 500 mm/min, the rotating tool speed was varied from 600 to 1800 RPM. The results of hardness measurement revealed that the hardness of nugget area is ~70% with respect to the parent material, and for the selected range of rotation speed, no clear dependence was observed and the hardness values close to the parent materials were achieved for the area located 5 mm away from the welding interface. The tension test shows that yield strength and tensile strength were slightly decreased with increasing RPM, with no observed difference for the elongation.

Experimental study of welding effect on grade S690Q high strength steel butt joint

  • Chen, Cheng;Chiew, Sing Ping;Zhao, Mingshan;Lee, Chi King;Fung, Tat Ching
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.401-417
    • /
    • 2021
  • This study experimentally reveals the influence of welding on grade S690Q high strength steel (HSS) butt joints from both micro and macro levels. Total eight butt joints, taking plate thickness and welding heat input as principal factors, were welded by shielded metal arc welding. In micro level, the microstructure transformations of the coarse grain heat affected zone (CGHAZ), the fine grain heat affected zone (FGHAZ) and the tempering zone occurred during welding were observed under light optical microscopy, and the corresponding mechanical performance of those areas were explored by micro-hardness tests. In macro level, standard tensile tests were conducted to investigate the impacts of welding on tensile behaviour of S690Q HSS butt joints. The test results showed that the main microstructure of S690Q HSS before welding was tempered martensite. After welding, the original microstructure was transformed to granular bainite in the CGHAZ, and to ferrite and cementite in the FGHAZ. For the tempering zone, some temper martensite decomposed to ferrite. The performed micro-hardness tests revealed that an obvious "soft layer" occurred in HAZ, and the HAZ size increased as the heat input increased. However, under the same level of heat input, the HAZ size decreased as the plate thickness increased. Subsequent coupon tensile tests found that all joints eventually failed within the HAZ with reduced tensile strength when compared with the base material. Similar to the size of the HAZ, the reduction of tensile strength increased as the welding heat input increased but decreased as the thickness of the plate increased.

Gene Expression Analysis of Lung Injury in Rats Induced by Exposure to MMA-SS Welding Fume for 30 Days

  • Oh, Jung-Hwa;Park, Han-Jin;Heo, Sun-Hee;Yang, Mi-Jin;Yang, Young-Su;Song, Chang-Woo;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.4
    • /
    • pp.306-313
    • /
    • 2007
  • The welding fume has been implicated as a causal agent in respiratory disease such as pneumoconiosis. The molecular mechanism by which welding fume induces toxicity in the lung is still unknown, but studies have focused on histological structure and indirect approach measuring the pulmonary damage markers. In the present study, gene expression profiles were analyzed in the lung of rats exposed by manual metal-arc stainless-steel (MMA-SS) welding fume for 30 days using Affymetrix GeneChip$^{(R)}$. Totally, 379 genes were identified as being either up- or down-regulated over 2-fold changes (P<0.01) in the lung of low- or high-dose group and were analyzed by using hierarchical clustering. We focused on genes involved in immune/inflammation responses were differentially regulated during lung injury induced by welding fume exposure. The information of these deregulated genes may contribute in elucidation of the inflammation mechanism during lung injury such as lung fibrosis.

Fatigue Life Prediction of Non-Load-Carrying Cruciform Welded Joint using Master S-N Curve based on Structural Stress Approach (구조응력기반 마스터 피로 선도를 이용한 하중 비전달형 십자 필렛 용접조인트의 피로예측)

  • Kwak, Si-Young
    • Journal of Welding and Joining
    • /
    • v.33 no.6
    • /
    • pp.49-54
    • /
    • 2015
  • Welding process is of importance to assemble products or structures, but also the process is structural weakness due to stress concentration in welding joint. The fatigue design of welded joint requires time & labor consuming fatigue test because the fatigue life is various according to the depth of joint, joint type and load type etc. In fatigue design codes, they guide to classify welding joints with their shape( BS7608, IIW Documents) and provide fatigue assessment information. In terms of numerical method for fatigue analysis, it is also difficult to decide the stress peak in joint because of mesh sensitivity which means that stress value is varies with element type or size on stress concentration zone. Hot-spot method is used generally, but Battelle of United States proposed Master S-N Curve based on structural stresses converted by mechanical equilibrium theory. In this research, we extracted master S-N curve from Battelle's fatigue test DB including test data of various welding joints to apply on Non-Load-Carrying cruciform Joint. Comparing fatigue results between the case of using normal stress and case of structural stress cor the cruciform Joint, The suggested Battelle method showed successive results.

A Stuy on Automatic Seam Tracking of Arc Welding Using an Laser Displacement Sensor (레이저 변위센서를 이용한 용접선 자동추적에 관한 연구)

  • 양상민;조택동;서송호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.680-684
    • /
    • 1996
  • Welding systems cannot adapt to changes in the joint geometry which may occur due to a variety of reason. Automatic seam tracking technigue is essential to adjust the welding torch position in real time as it moves along the seam. Automatic tracking system must keep the welding speed constant unrelation to the change of the welding path. Therefore, the information from the laser displacement sensor must be converted into the input to operate the X-Y table and to rotate the desired torch position by proposed algorithm. In this research, laser displacement sensor is used as a seam finder in the automatic tracking system. X-Y moving table manipulated by ac servo motor controls the position and velocity of the torch-and-sensor part. DC motor controls the position and velocity of the torch. X-Y table controls the position of sensor and relative position of torch is controlled by dc motor which is mounted at sensor-and-torch part. Sensor is always ahead of torch to preview the weld line. From the experimental results, we could see the possiblity that the laser displacement sensor can be used as a seam finder in welding process and that the seam tracking system controlled by proposed algorithm is well done.

  • PDF

A Study on Fatigue Characteristics for Design Automation of TS-Type Spot Welded Lap Joint (TS형 박강판 용접 구조물의 자동화설계를 위한 피로특성에 관한 연구)

  • Yeb, Baek-Seung;Ho, Bae-Dong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.290-296
    • /
    • 2012
  • Cold-rolled carbon steel sheets are commonly used in railroad car or commercial vehicles such as the automobile. These are mainly fabricated by spot welding which is a kind of electric resistance welding. But fatigue strength of spot welding joint is lower than that of base metal due to high stress concentration at nugget edge of the spot welded part. And fatigue strength of them is especially influenced by not only geometrical and mechanical factors but also welding conditions of the spot welded joint. So for fatigue design of gas welded joints such as TS-type joints, it is necessary to obtain design information on stress distribution at the weldment as well as fatigue strength of spot welded joints. And also, the influence of the geometrical parameters of spot welded joints on stress distribution and fatigue strength must be evaluated. And analysis approach for fatigue test using design of experiment are evaluated optimum factor in TS-type welded joint and geometrical parameters of materials. Using these results, that factors applied to fundamental information for automation of fatigue design.

Development of Plasma Monitoring System for Laser Welding Quality Analysis (레이저 용접품질 해석용 플라즈마 감시장치 개발)

  • 권장우;권오상;장영건;이경돈;홍승홍
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.425-431
    • /
    • 1999
  • We develope plasma monitoring system which detect plasma signals and store them for Laser welding quality evaluation and analysis using photo detector. The most fundamental and important aspects in such a system are signal restoration fidelity, noise immunity and noise cancelation capability. In this paper, we propose implementation method using distribute processing structure and hybrid digital communication for high noise cancelation capability, immunity and signal fidelity which are poorly presented in other researches. Lab experimental results and welding experimental results show a effectiveness of proposed method and plasma data is stored with 256 kbps without any communication error. we are implementing various welding defect recognition algorithm in this system.

  • PDF

The Welding Process Control Using Neural Network Algorithm (Neural Network 알고리즘을 이용한 용접공정제어)

  • Cho Man Ho;Yang Sang Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.84-91
    • /
    • 2004
  • A CCD camera with a laser stripe was applied to realize the automatic weld seam tracking in GMAW. It takes relatively long time to process image on-line control using the basic Hough transformation, but it has a tendency of robustness over the noises such as spatter and arc tight. For this reason, it was complemented with adaptive Hough transformation to have an on-line processing ability for scanning specific weld points. The adaptive Hough transformation was used to extract laser stripes and to obtain specific weld points. The 3-dimensional information obtained from the vision system made it possible to generate the weld torch path and to obtain the information such as width and depth of weld line. In this study, a neural network based on the generalized delta rule algorithm was adapted for the process control of GMA, such as welding speed, arc voltage and wire feeding speed.

Weld pool size estimation of GMAW using IR temperature sensor (GMA 용접공정에서 적외선 온도 센서를 이용한 용융지 크기 예측)

  • 김병만;김영선;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1404-1407
    • /
    • 1996
  • A quality monitoring system in butt welding process is proposed to estimate weld pool sizes. The geometrical parameters of the weld pool such as the top bead width and the penetration depth plus half back width are utilized to prove the integrity of the weld quality. The monitoring variables used are the surface temperatures measured at three points on the top surface of the weldment. The temperature profile is assumed that it has a gaussian distribution in vertical direction of torch movement and verify this assumption through temperature analysis. A neural network estimator is designed to estimate weld pool size from temperature informations. The experimental results show that the proposed neural network estimator which used gaussian distribution as temperature information can estimate the weld pool sizes accurately than used three point temperatures as temperature information. Considering the change of gap size in butt welding, the experiment were performed on various gap size.

  • PDF