DOI QR코드

DOI QR Code

High-efficiency repair welding technology for marine engine components

선박엔진 부품의 고능률 보수용접기술

  • Received : 2016.11.04
  • Accepted : 2016.11.25
  • Published : 2017.01.31

Abstract

Of the marine engine components, the piston crown and exhaust valve are repaired most frequently. These works are conducted through conventional welding processes such as GTAW or SAW, domestically in marine engine repair factories. New high-efficiency welding or overlay processes such as tandem SAW, tandem MAG, hybrid TIG-MIG welding, pulsed-GMAW, CMT welding, and super TIG welding have been developed recently. Moreover, the plasma transfered arc (PTA) process is an efficient spray method for overlaying on the exhaust valve. In this review paper, the new high-efficiency repair welding methods are introduced for marine engine components. The problems due to repair welding for marine engine components are also presented.

현재 국내에서 공장 보수용접이 가장 많이 이루어지고 있는 선박 엔진 부품은 피스톤 크라운과 배기밸브이다. 또한 선박 엔진 밸브와 크랭크 축 등의 경우에는 신규 부품에서도 성능향상을 위해 표면개질방법으로 오버레이 용접이 시공되고 있다. 용착률을 높이는 고능률 오버레이 용접 공정으로 Hot Wire GTAW, Cold Tandem GMAW, Band Arc SAW, Tandem SAW법이 개발되어 있고, 용사방법으로 PTA공정이 현장에서 많이 시공되고 있다. 입열량 제어가 용이한 공정으로 GMAW-Pulse, CMT 용접공정이 있다. 엔진 배기밸브의 보수를 위한 오버레이공정에서 열영향부에 가까운 모재 내에 액화균열이 발생하는 경우가 있어 주의를 요한다. GMAW-Pulse 공정과 CMT공정에서는 입열량 제어가 용이하여 높은 용착속도를 유지하면서도 액화균열의 발생 없이 엔진 밸브의 보수 또는 표면 개질 목적으로 시공이 가능하다. 최근에 국내에서 고능률 용접 공정으로 선박엔진의 보수 또는 표면 개질 목적으로 사용 가능한 Super-TIG 용접공정이 개발되어 있다. 이 공정은 아크를 플라즈마 스트림이라고 보고 전류증가에 따라 커지는 아크압력을 막으면서도 용가재의 용융 효율이 극대화 되도록 폭이 큰 C형의 오목한 용가재를 발명하여 용착률을 획기적으로 향상시킨 용접공정이다.

Keywords

References

  1. H. NAKAZAWA and H. NAGASAKI, "Welding consumables and process for the wind tower structures," Journal of Japan Welding Society, vol. 79, no. 7, pp. 648-652, 2010. https://doi.org/10.2207/jjws.79.648
  2. J. S. Kim and I. J. Kim, "A study on characteristic of residual stresses in a wind tower using the tandem circumferential welding process," Journal of the Korean Society of Manufacturing Technology Engineers, vol. 21, no. 6 pp. 938-945, 2012. https://doi.org/10.7735/ksmte.2012.21.6.938
  3. M. Gehring, "High quality & high efficient welding technology of wind tower," Welding Technology, vol. 56, no. 9, pp. 88-93, 2008 (in Japanese).
  4. T. Sato, "Cost down by improvement of welding efficiency," Welding Technplogy, vol. 63, no. 5, pp. 88-97. 2015.
  5. S. Kanemaru, T. Sasaki, T. Sato, and M. Tanaka, "Basic study on TIG-MIG hybrid welding process," Quarterly journal of the Japan Welding Society, vol. 30, no. 1, pp. 29-34, 2012. https://doi.org/10.2207/qjjws.30.29
  6. Japan Welding Society, Advanced Welding & Joining Technology (New edition), Japanese book, pp. 49, 2008.
  7. Fronius Ltd, CMT Weld Brochure, 2005.
  8. O. T. Ola and F. E. Doern, "A study of cold metal transfer clads in nickel-base INCONEL 718 superalloy," Materials & Design vol. 57, pp. .51-59, 2014. https://doi.org/10.1016/j.matdes.2013.12.060
  9. J. D. Kim, "The penetration characteristic with pulse correction and arc voltage during laser/arc hybrid welding for steel," Spring Conference of the Korean Society for Precision Engineering, p. 147, 2015.
  10. J. B Wang, H. Nishimura, S. Katayama, and M. Mizutani, "Welding of aluminum alloy by using filler=Aided laser-arc hybrid eelding process," Light Metal Welding, vol. 48, no.11, pp. 424-434, 2010 (in Japanese).
  11. S. M cho, Super-TIG Welding conference, Bukyung University, 2016.
  12. K. Gurumoorthy, M. Kamaraj, K. P. Rao, and S. Venugopal, "Microstructure and wear characteristics of nickel based hardfacing alloys deposited by plasma transferred arc welding," MATERIALS SCIENCE AND TECHNOLOGY, vol. 22, no. 8, pp. 975-980, 2006. https://doi.org/10.1179/174328406X100734
  13. T. Masahiro, "3D Printer and Additive Manufacturing with Metal Powder," Journal of Japan Welding Society, vol. 83, no. 4 pp. 258-261, 2014. https://doi.org/10.2207/jjws.83.258
  14. D. J. Liu, J. C. Lippold, J. Li, S. R. Rohklin, J. Vollbrecht, and R. Grylls, "Laser engineered net shape (LENS) technology for the repair of Ni-base superalloy turbine components," Metallurgical and Materials Transactions A, vol. 45, no. 10, pp. 4454-4469, 2014. https://doi.org/10.1007/s11661-014-2397-8
  15. Y. S Kim and Y. K Choi, Experimental Report in PTA Overlay Process, 2008.
  16. Y. S. Kim, "High-efficiency repair welding technology for marine engine components," KISTI ReSEAT Program Report for Emerging Technology, 2016.
  17. K. M. Moon, K. H. Lee, H. R. Cho, M. H. Lee, Y. H. Kim, and J. G. Kim, "An electrochemical study on corrosion property of repair welding part for exhaust valve," Journal of Ocean Engineering and Technology, vol. 22, no. 3, pp. 82-88, 2008.
  18. J. G. Kim, H. R. Cho, M. H. Lee, Y. H. Kim, and K. M. Moon, "Effect of welding method and welding material to corrosion property of repair weld zone for exhaust valve in 5% $H_2SO_4$ solution -1," Journal of the Korean Society of Marine Engineering, vol. 31, no, 6, pp. 744-752, 2007. https://doi.org/10.5916/jkosme.2007.31.6.744
  19. K. M. Moon, H. R. Cho, M. H. Lee, and Y. H. Kim, "Evaluation of corrosion property for repair welding zone of exhaust valve," Materials Science Forum, vol. 575-578, pp. 780-785, 2008. https://doi.org/10.4028/www.scientific.net/MSF.575-578.780
  20. J. H. Shin and K. M Moon, "An electrochemical evaluation on the corrosion resistance of welding zone due to kinds of repair welding filler metals and post weld heat treatment," Corrosion Science and Technology, vol. 9, no. 6, pp. 310-316, 2010.
  21. Y. H. Xiang, B. S. Xu, Y. H. Lv, and D. Xia, "Technical study of exhaust valve overlaying based on micro-plasma arc welding," Key Engineering Materials vol. 373-374, pp. 330-333, 2008. https://doi.org/10.4028/www.scientific.net/KEM.373-374.330
  22. F. Hui, L. Jianfeng, and S. Jie, "Study on remanufacturing repair of damaged crank shaft journal surface by laser cladding," Chinese Journal of Lasers, vol. 41, no. 8, p. 0803003, 2014. https://doi.org/10.3788/CJL201441.0803003
  23. C. P. Bork, "Reprint of 'Failure of a Motor Vessel's Crankshaft 1968'," Engineering Failure Analysis, vol. 43, no. 8, pp. 77-91, 2014. https://doi.org/10.1016/j.engfailanal.2014.03.014
  24. K. Y. Lee, J. H. Kim, and Y. S. Kim, "A study on the restoring method of the abrasives cylinder liner of cast iron using thermal plastic deformation technique," Proceedings of the KOSME 2002 Spring Conference, pp. 141-146, 2002.
  25. K. Y. Lee, Y. K. Choi, and Y. S. Kim, "Development of the renewing method of the scrapped cast iron cylinder liner using the metal spray technique," Proceedings of the KOSME 2002 Autumn Conference, pp. 127-133, 2002.
  26. S. M. Cho, J. H. Kim, and Y. S. Kim, "A study on the repair welding methods for cylinder block of diesel engines," Journal of the Korean Society of Marine Engineering, vol. 23, no. 3, pp. 331-337, 1999.
  27. Method of revising a cylinder liner in internal combustion engine, KO10-2000-0056823.
  28. Engine Cylinder liner's regenerating method and apparatus, KO10-0405227-0000.
  29. PISTON FOR INTERNAL-COMBUSTION ENGINE, JP-0226545.
  30. METHOD FOR REPAIRING EXHAUST VALVE FOR INTERNAL COMBUSTION ENGINE, JP-0005705.
  31. Valve welding method and device, KO 10-2004-0088747.
  32. HIGH HEAT-RESISTANCE EXHAUST VALVE SPINDLE OF MARINE ENGINE HAVING EXCELLENT WEAR RESISTANCE AND CORROSION RESISTANCE , KO10-2011-0096362.
  33. LASER CLADDING APPARATUS, US-0144455.