• Title/Summary/Keyword: Welded zone

Search Result 496, Processing Time 0.031 seconds

On Corrosion Behaviors in Welded Zone of API 5L-X65 Steel for Natural Gas Transmission (천연가스 수송용 API 5L-X65강 용접부의 부식거동에 관한 연구)

  • JO SANG-KEUN;SONG HAN-SEOP;KONG Yu-SIK;KIM YOUNG-DAI
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.50-56
    • /
    • 2004
  • This study is on the constant-current stress corrosion test, related to the load stress, in both the welded and non-welded zones of high tensile strength steel that is used for natural gas transmission. The surface corrosion pattern of the welded zone of API 5L-X65 specimens for natural gas transmission showed general corrosion and narrow pitting, and the pitting was increased with load stress. Initially, the average relative electrode potential and the average relative current of the high tensile strength steel, used for natural gas transmission specimens, were decreased rapidly, and the average relative electrode potential was higher and the average relative current was lower in welded zone, compared to base metal. The average relative electrode potential was decreased with load stress, and the average relative current was somewhat increased by increasing the load stress. The corrosion rate was less in welded zone, compared to base metal, and the corrosion rate was decreased by increasing the load stress.

Evaluation of the Microstructures and Mechanical Properties on Friction Welded STK400 Tube (마찰접합 된 STK400 Tube의 미세조직과 기계적 특성 평가)

  • Kim, Gyeong-Woo;Song, Kuk-Hyun
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.30-36
    • /
    • 2019
  • We evaluate the properties of friction welded STK400 steel tube in terms of the relationship between microstructures and mechanical properties. Friction welding is conducted at a rotation speed of 1,600 rpm and upset time of 3-7 sec for different thicknesses of STK 400 tubes. To analyse the grain boundary characteristic distributions(GBCDs) in the welded zone, electron backscattering diffraction(EBSD) method is introduced. The results show that a decrease in welding time (3 sec.) creates a notable increase grain refinement so that the average grain size decreases from $15.1{\mu}m$ in the base material to $4.5{\mu}m$ in the welded zone. These refined grains achieve significantly enhanced microhardness and a slightly higher yield and higher tensile strengths than those of the base material. In particular, all the tensile tested specimens experience a fracture aspect at the base material zone but not at the welded zone, which means a soundly welded state for all conditions.

A Study on The Strength Evaluation of welded Joints for Degraded Material (열화재 용접부의 강도평가에 관한 연구)

  • 정의정;윤한용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.705-710
    • /
    • 2002
  • Welding is used not only during the shipbuilding, but also during the repairing of ships. While repairing of ships, it is inevitable to weld new materials with degraded materials. In this case, it is predicted that the strength of both the sections is not identical each other. In this study, the respective welded joints in terms of mechanical properties such as microstructure, mechanical strength and fatigue crack propagation, with the component obtained from the barge used for a long-term period, were analyzed. It was found that the material degradation had a significant effect on the welded joints. The fatigue crack propagation in welded sections showed a big difference. The rate of fatigue crack growth of degraded material for both heat affected zone and parent metal was faster than that of new material. By contrast, The result within identical materials showed that the heat-affected zone was slower than that of parent metal

  • PDF

A Study on the Strength Evaluation of Welded Joints for Degraded Material (열화재 용접부의 강도평가에 관한 연구)

  • 정의정;윤한용;임명환;김태식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.75-82
    • /
    • 2002
  • Welding is used not only for the shipbuilding, but also for the repairing of ships. While repairing of ships, it is inevitable to weld new materials with degraded materials. In this case, it is predicted that the strength of both the sections is not identical each other. In this study, the respective welded joints in terms of mechanical properties such as microstructure, mechanical strength and fatigue crack propagation, with the component obtained from the barge used for a long-term period, were analyzed. It was found that the material degradation had a significant effect on the welded joints. The fatigue crack propagation in welded sections showed a big difference. The rate of fatigue crack growth of degraded material for both heat affected zone and parent metal was faster than that of new material. By contrast, the result from identical materials showed that the rate of fatigue crack growth of the heat-affected zone was slower than that of parent metal.

The TRC Test for Cold Crack Susceptibility of Welded Zone for ABS EH32 Steel (인장구속 균열시험에 의한 ABS EH 32강 용접부 저온 균열 감수성 시험)

  • 정수원;박동환;김대헌
    • Journal of Welding and Joining
    • /
    • v.2 no.2
    • /
    • pp.62-69
    • /
    • 1984
  • In this study, cold crack susceptibility of high strength steel (ABS EH32 Steel) welded zone with shielded metal are welding was investigated by tensile restraint cracking test method. Effects of diffusible hydrogen content on root cracking, lower critical stress, crack initiation and fracture mode, hardness value distribution of welded zone and fractograph were mainly investigated. Following conclusions are made: 1. In the view of the lower critical stress level, wet electrode, containing much diffusible hydrogen content shows lower value than dried electrode. 2. Hardness value(Hv 5kg) in Heat Affected Zone of wet electrode is higher than that of dried electrode caused by hydrogen embrittlement. 3. In the case of wet electrode, root crack is initiated and propagated in Heat Affected Zone and then propagated to weld metal, but using of dried electrode, root crack is initiated in Heat Affected Zone and propagated to weld metal without propagating in HAZ. 4. For wet electrode, quasi-cleavage fracture mode is majorly observed on the fracture surface of HAZ and partially of weld metal due to hydrogen embrittlement.

  • PDF

Fatigue Behavior of Friction Welded Material of Domestic Dissimilar Steels - In Case of SM 45C to SUS304 Friction Welded Steel - (國산 異種鋼을 摩擦壓接한 경우의 疲勞擧動)

  • 송삼홍;박명과
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.953-962
    • /
    • 1987
  • Domestic dissimilar structural steels, SM 45 C and SUS304 were friction welded under optimal welding condition and the micro-artificial holes were drilled at SM 45 C base metal, SM 45 C HAZ, welded zone, SUS 304 HAZ, and SUS 304 base metal for fatigue behavior tests. In this study, the fatigue limit and the behavior of micro-crack propagation, crack propagation rate, and its dependency on stress intensity factor under the low stress level and high stress level of bending stress have been investigated. The results obtained are as follows. (1) The fatgiue strength of the portion of SM45C B.M., SM45C HAZ, welded zune, SUS304 HAZ and SUS304 B.M. on notched friction welded specimens are 20 kgf/mm$^{2}$, 32 kgf/mm$^{2}$, 27kgf/mm$^{2}$, 29kgf/mm$^{2}$, and 29kgf/mm$^{2}$, respectively. (2) The fatigue strength of welded zone of unnotched and notched specimens are 32.5kgf/mm$^{2}$, and 27kgf/mm$^{2}$, respectively. (3) Micro-crack initiation in the welded zone, HAZ, and each base metals occurrs simultaneously in front and rear of micro-hole tips in the view of the rotational directions. (4) Fatigue crack propagates more slowly in the welded zone than in another protions of specimen, regardless of the magnitude of the stress level. (5) Fatigue crack propagation rates were plotted as a function of stress intensity range. The value of m in the equation da/dN=C(.DELTA.K)$^{m}$ was found to range from 2.09-2.55 in this study.

Estimation of Fatigue Life in Butt-Welded Zone of SM45C Steel Rod (강 봉(SM45C) 맞대기 용접부의 피로수명 평가)

  • Oh, Byung-Duck;Lee, Yong-Bok
    • Journal of Welding and Joining
    • /
    • v.26 no.3
    • /
    • pp.45-50
    • /
    • 2008
  • SM45C steel rods being used generally for power transmission shafts and machine components was selected and welded by Butt-GMAW(Gas Metal Arc Welding) method. An estimation of fatigue life was studied by constructing S-N curve. Fatigue strength of base metal zone showed higher values than one of weld zone in low cycles between $10^4$ and $10^6$cycles. However, significant decrease in fatigue strength of base metal was found around $10^6$cycles, which were almost same as one of heat affected zone. This decrease was attributed that initial residual stress of the steel rods distributed by drawing process was diminished by continually applied load, and resulted in softening of base metal. The fatigue limit of the weld zone was highest in the boundary between deposited metal zone and heat affected zone, and followed by in the order of deposited metal zone, base metal zone, and heat affected zone. Based on these results, it is revealed that the stress for safety design of machine components using SM45C butt-welded steel rods must be selected within the region of the lowest fatigue limit of heat affected zone.

Temperature and Mechanical Properties of Welded Joints Under Friction Stir Welding Conditions of Mg Alloy (AZ61) (Mg Alloy(AZ61) 마찰교반용접 조건에 따른 용접부의 온도와 기계적 특성변화)

  • Lee, Woo Geun;Kim, Jung Seok;Sun, Seung-Ju
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.378-386
    • /
    • 2017
  • Friction stir welding was performed using six welding conditions to evaluate the mechanical properties and microstructure of the welded zone based on its temperature change in the extruded plate of magnesium alloy AZ61. The welded zone temperature was measured using a thermocouple, and the maximum temperature ranges for the advancing and retreating sides were approximately $210-315^{\circ}C$ and $254-339^{\circ}C$, respectively. Depending on the welding conditions, a temperature difference of more than $100^{\circ}C$ was observed. In addition, the maximum yield strength and maximum tensile strength of the welded component was 84.4% and 96.9%, respectively, of those of the base material. For the temperatures exceeding $300^{\circ}C$, oxidation defects occurred in the weld zone, which decreased the mechanical strength of the weld zone. The microstructure and texture confirmed that fracture occurred because of the grain size deviation of the welding tool and the severe anisotropy of the texture of the welded joints.

Experimental Study on the Hardness and Wear Characteristics of Welded Head Hardened Rails (경두레일 용접부의 경도와 마멸특성에 관한 실험적 연구)

  • 황준태;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.339-344
    • /
    • 1999
  • In this paper, the hardness and wear characteristics of the head hardened rail, which is made by thermite and gas pressure weldings have been presented. In general, the wear rate of the gas pressure welded rail is high and uniform compared with that of thermite welded rail. The results indicate that HH 370 welded rail shows stable in hardness and low wear rate compared with other two welded rails. The hardness of head hardened rails shows uniformly distributed along the welded zone, thermally affected zone and a base matrix.

  • PDF

Evaluation of Material Properties of Welding Zone in Laser Welded Blank and Its Application to Sheet Metal Forming Analysis (레이저 용접 테일러드 블랭크의 용접부 물성평가 및 박판성형 해석에 적용)

  • 구본영;금영탁
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 1999.05a
    • /
    • pp.29-32
    • /
    • 1999
  • The material properties of laser welding zone such as strength coefficient, work-hardening exponent, and plastic anisotropic ratio are analytically obtained from those of base metals based on the tensile tests. . The finite element formulation is developed for predicting strain distributions and weld line movements in the forming processes of laser welded blank. The welding zone(WZ) is modelled with the several, narrow finite elements whose material characteristics are based on the experimental results and the analytical equations. In order to show an application of the developed weld element the stamping process of auto-body door inner panel is simulated. FEM predictions are compared and showed good agreements with experimental observations.

  • PDF