DOI QR코드

DOI QR Code

Evaluation of the Microstructures and Mechanical Properties on Friction Welded STK400 Tube

마찰접합 된 STK400 Tube의 미세조직과 기계적 특성 평가

  • Kim, Gyeong-Woo (Dept. of Welding and Joining Science Engineering, Chosun University) ;
  • Song, Kuk-Hyun (Dept. of Welding and Joining Science Engineering, Chosun University)
  • 김경우 (조선대학교 용접.접합과학공학과) ;
  • 송국현 (조선대학교 용접.접합과학공학과)
  • Received : 2018.11.07
  • Accepted : 2018.12.05
  • Published : 2019.01.27

Abstract

We evaluate the properties of friction welded STK400 steel tube in terms of the relationship between microstructures and mechanical properties. Friction welding is conducted at a rotation speed of 1,600 rpm and upset time of 3-7 sec for different thicknesses of STK 400 tubes. To analyse the grain boundary characteristic distributions(GBCDs) in the welded zone, electron backscattering diffraction(EBSD) method is introduced. The results show that a decrease in welding time (3 sec.) creates a notable increase grain refinement so that the average grain size decreases from $15.1{\mu}m$ in the base material to $4.5{\mu}m$ in the welded zone. These refined grains achieve significantly enhanced microhardness and a slightly higher yield and higher tensile strengths than those of the base material. In particular, all the tensile tested specimens experience a fracture aspect at the base material zone but not at the welded zone, which means a soundly welded state for all conditions.

Keywords

References

  1. T. S. Ashton, Iron and steel in the industrial revolution, p.265, Manchester University Press, London, England (1924).
  2. M. F. Burditt, Ductile Iron Handbook, p.276, American Foundry Society, State of Illinois, America (2010).
  3. S. Wei and S. Lu, Mater. Design. 35, 43 (2012). https://doi.org/10.1016/j.matdes.2011.09.065
  4. Q.-y. Sha, D.-h. Li, G.-j. Huang and J. Guan, Int. J. Min. Met. Mater. 20, 741 (2013). https://doi.org/10.1007/s12613-013-0792-6
  5. A.R. Biswas, S. Chakraborty, P.S. Ghosh and D. Bose, Mater. Today-Proceedings. 5, 12384 (2018). https://doi.org/10.1016/j.matpr.2018.02.217
  6. X. He, X. Yang, G. Zhang, J. Li and H. Hu, Mater. Design. 40, 386 (2012). https://doi.org/10.1016/j.matdes.2012.04.010
  7. N. Lun, D.C. Saha, A. Macwan, H. Pan, L. Wang, F. Goodwin and Y. Zhou, Mater. Design. 131, 450 (2017). https://doi.org/10.1016/j.matdes.2017.06.037
  8. W. M. Thomas, P. L. Threadgill and E. D. Nicholas, Sci. Technol. Weld. Joi., 4, 365 (1999). https://doi.org/10.1179/136217199101538012
  9. T.C. Nguyen and D.C. Weckman, Metall. Mater. Trans. B. 37B, 275 (2006).
  10. S. Celik and I. Ersozlu, Mater. Design., 30, 970 (2009). https://doi.org/10.1016/j.matdes.2008.06.070
  11. T. Vuherer, P. Maruschak and I. Samardzic, Metalurgija, 51, 301 (2012).
  12. M. Junaid, F.N. Khan, K. Rahman and M. N. Baig, Opt. Laser. Technol. 97, 405 (2017). https://doi.org/10.1016/j.optlastec.2017.07.010
  13. P. H. O. M. Alves, M. S. F. Lima, D. Raabe and H. R. Z. Sandim, J. Mater. Process. Technol., 252, 498 (2018). https://doi.org/10.1016/j.jmatprotec.2017.10.008
  14. C. Y. Lee, D.H. Choi, Y. M. Yeon, W. C. Seo and S. B. Jung, J. Korean Weld. Join. Soc., 26, 556 (2008).
  15. U. Caligulu, M. Acik, Z. Balalan and N. Kati, Int. J. Steel. Struct., 15, 923 (2015). https://doi.org/10.1007/s13296-015-1213-7
  16. F. Sarsilmaz, I. Kirik and S. Bati, J. Manuf. Process., 28, 131 (2017). https://doi.org/10.1016/j.jmapro.2017.05.025
  17. M. Maalekian, Sci. Technol. Weld. Joi., 12, 738 (2007). https://doi.org/10.1179/174329307X249333
  18. M. B. Uday, M. N. Ahmad Fauzi, H. Zuhailawati and A. B. Ismail, Sci. Technol. Weld. Joi., 15, 534 (2013). https://doi.org/10.1179/136217110X12785889550064
  19. F. D. Duffin and A. S. Bahrani, Wear, 26, 53 (1973). https://doi.org/10.1016/0043-1648(73)90150-6
  20. E. H. Kim, H. Fujii, J. H. Kim and K. H. Song, Mater. Trans., 59, 503 (2018). https://doi.org/10.2320/matertrans.M2017354
  21. E. H. Kim, H. H. Cho and K. H. Song, Korean J. Mater. Res., 27, 276 (2017). https://doi.org/10.3740/MRSK.2017.27.5.276
  22. M. Vigneshwar, S.T. Selvamani, P. Hariprasath and K. Palanikumar, Mater. Today-Proc., 5, 7853 (2018). https://doi.org/10.1016/j.matpr.2017.11.466
  23. Z. Liang, G. Qin, P. Geng, F. Yang and X. Meng, Mater. Process. Tech., 25, 153 (2017).
  24. M. Stutz, F. Pixner, J. Wagner, N. Reheis, E. Raiser, H. Kestler and N. Enzinger, Int. J. Refract. Met. H., 73, 79 (2018). https://doi.org/10.1016/j.ijrmhm.2018.02.004
  25. S. Mironov, Y. S. Sato and H. Kokawa, Acta. Mater., 56, 2602 (2008). https://doi.org/10.1016/j.actamat.2008.01.040
  26. S. Emami, T. Saeid and R. A. Khosroshahi, J. Alloy. Compd., 739, 678 (2018). https://doi.org/10.1016/j.jallcom.2017.12.310
  27. T. R. McNelley, Mater. Sci. Eng. A., 230, 88 (1997). https://doi.org/10.1016/S0921-5093(97)00087-7
  28. T. F. A. Santos, E. A. Torres, J. C. Lippold and A.J. Ramirez, J. Mater. Eng. Perform., 25, 5173 (2016). https://doi.org/10.1007/s11665-016-2357-0
  29. H. Fujii, Weld. Int., 25, 260 (2011). https://doi.org/10.1080/09507111003655358
  30. H. Fujii, L. Cui, N. Tsuji, M. Maeda, K. Nakata and K. Nogi, Mater. Sci. Eng. A., 429, 50 (2006). https://doi.org/10.1016/j.msea.2006.04.118
  31. M. Ashby, H. Shercliff and D. Cebon, Materials: engineering, science, processing and design, p.528, Elsevier Ltd., Oxford, England (2007).
  32. J. Pelleg, Mechanical Properties of Materials, p.645, G.M.L Gladwell, Springer, Berlin, German (2013).