• Title/Summary/Keyword: Welded part

Search Result 297, Processing Time 0.034 seconds

A Study on Welding Distortion and Residual Stress for Tubular Welded Joint (튜브 용접부의 용접변형 및 잔류응력에 관한 연구)

  • Jin, Hyung-Kook;Shin, Sang-Beom;Lee, Dong-Ju;Park, Dong-Hwan
    • Journal of Welding and Joining
    • /
    • v.30 no.5
    • /
    • pp.51-56
    • /
    • 2012
  • The purpose of this study is to evaluate the distortion and the residual stress of GTA tubular welds between tube and head. In order to do it, the heat input model for GTA welding process was first developed by experiment and FE analyses. The welding distortion and the residual stress distribution of the tubular welds according to welding pass and various restraint degrees were evaluated by using FEA with the heat input model. From FEA results, it was found that the residual stress and the radial distortion at the weld toe of tube part decrease with a decrease in the number of welding pass. However, the maximum residual stresses in each direction of tubular welds are almost constant regardless of the external restraint degree. It was mainly due to the high internal restraint of the welds.

A Study on T-Joint Welding by High Power Fiber Laser of SAPH Steel Plate for Automobile (자동차용 강판 SAPH의 고출력 파이버 레이저에 의한 T형상 용접특성에 관한 연구)

  • Oh, Yong-Seok;Yoo, Young-Tae;Shin, Ho-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.35-44
    • /
    • 2009
  • The purpose of this paper is to describe experimental results about the T-joint welding of the high power continuous wave (CW) fiber laser for SAPH steel plate for seat frame of car. The seat rail is a part of seat frame of cars. The assembling method is mostly fix up using a bolt and nut. But this assembling method has many demerits in productivity such as increasing work process and material cost. This paper presents an experimental study about Laser T-Joint weldability of seat rail. Laser welding has many advantages in lightness and saving material costs of seat frame. The laser beam was moved along the work pieces by six axis robot with process optical fiber. The laser beam is focused with a welding head within incident angle $15{\sim}45^{\circ}$ for the purpose of the T-joint welding through two side full penetration. The range of the root gap size is less than ${\leq}0.4mm$. Optical microscopy SEM were performed to observe the micro structures and determine the structures of welded zone.

Improvement of the behaviour of composite slabs: A new type of end anchorage

  • Fonseca, Alexandre;Marques, Bruno;Simoes, Rui
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1381-1402
    • /
    • 2015
  • The application of composite steel-concrete slabs with profiled steel sheeting has increased, due to the various advantages in relation to reinforced concrete slabs such as, the reduced thickness, the reduced amount of lost formwork needed, as well as the speed of execution. The loss of longitudinal shear resistance is, generally, the governing design mode for simply supported spans of common lengths. For common distributed loadings, the composite behaviour is influenced by the partial shear connection between the concrete and the steel sheeting. The present research work is intended to contribute to improving the ultimate limit state behaviour of composite slabs using end anchorage. Eurocode 4, Part 1.1 (EN 1994-1-1) provides an analytical methodology for predicting the increase of longitudinal resistance, achieved by using shear studs welded through the steel sheeting as the end anchorage mechanism. The code does not supply an analytical methodology for other kinds of end anchorage so, additional tests or studies are needed to prove the effectiveness of these types of anchorage. The influence of end anchorage mechanisms provided by transverse rebars at the ends of simply supported composite slabs is analysed in this paper. Two experimental programmes were carried out, the first to determine the resistance provided by the new end anchorage mechanism and the second to analyse its influence on the behaviour of simply supported composite slabs.

Design and Construction Method Considering Turnout for High-speed on The Bridge with Concrete Track (콘크리트궤도에 고속분기기 설치를 고려한 교량설계 및 시공기법)

  • Kim, In-Jae;Oh, Sei-Young;Joo, Hwan-Joong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.71-79
    • /
    • 2008
  • The concrete track is being used at the Phase II of the Kyeongbu High Speed Railway and New Constructed Honam High Speed Railway. When it makes a decision of bridge type, It has to consider about longitudinal forces of Continuous Welded Rail, Displacement at the end of bridges, Up-lift forces for fastener on the track. If it is installed turnout on the bridge, There is likelihood of the deck twist by applying the each difference longitudinal forces at the 4 each rails and the buckling by concentration of rail stress at the turnout. Moreover, If it is installed turnout on the continuous bridge and REJ(Rail Expansion Joint) on the main track or turnout track. It is hard to keep a safety for rail because of coming to twist or folding at the expansion of deck on the turnout track. Therefore when it is a design of bridge with turnout. It need to take bridge type to minimize an additional axial force and a displacement at the turnout. This paper makes a study of the composite steel arch bridge that is able to resolve criteria requirements of safety for track with turnout and suggest a helpful design method for bridge considering track with turnout by being based on design and construction method of Eonyang Bridge at the north part of Ulsan Station in Phase II of the Kyeongbu High Speed Railway.

  • PDF

Study on Optimum Welding Position between Shell and Cylinder based on SEA. (SEA를 이용한 쉘과 실린더의 최적 용접 조건에 관한 연구)

  • 안병하;이장우;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.969-972
    • /
    • 2003
  • The overall aim of this paper is to determine coupling loss factor of welding point between shell and cylinder using loss factor and structural loss factor. For this purpose, two kinds of loss factor were adopted. One is loss factor of each sub structure, another is structural loss factor based on the complex welded or assembled structure. Using these two parameters, it is possible to derive the coupling loss factor which represent characteristic condition of SEA theory. Coupling loss factor of conjunction in complex structure was expressed as power balance equation. The derived equation for a coupling loss factor has been simplified on the assumption of one way(nl- directional) power flow between multi-sub structures. Using these conditions, it is possible to find the equation of coupling loss factor expressed as above two loss factors. To check the effectiveness of above equation, this paper used two stage application. The first approach was application between simple cylinder and shell. The next was adopted rotary compressor. Rotary compressor has three main conjunctions between shell and internal vibration part. This equation was applied to find out the optimum welding Point with respect to reduce the noise propagation. It shows the effective tool to evaluate the coupling loss factor in complex structure

  • PDF

Effect of the Groove Shape of Ultra Thick Box-Column with Center Segregation under High Heat Input for Corner Welding (중심 편석층이 있는 극후판 박스-칼럼의 대입열 코너이음 용접시 그루브 형상의 영향)

  • 최원규;이종봉;권영두;구남서
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.72-79
    • /
    • 2002
  • In this study, time-dependent distributions of temperature and stresses, in the box-column welded from ultra thick plates with center segregation, has been analyzed by the commercial finite element package SYSWELD+, for several types and angles of groove. The major points of investigation are the optimum type and angle of groove that minimize weld stress specially at the center segregation, as well as temperature distribution, residual stresses and changes in the mechanical properties. The results can be summarized as follows; 1) Generally the thermal cycle at the root of groove exhibits relatively rapid cooling pattern, however, most of the other part weldment have a slow cooling pattern in all groove types. 2) Most of the micro-structures of weldment are composed of ferrite and pearlite, meanwhile we could find martensite and bainite locally a the root of the groove. 3) Optimum groove type for high heat input welding of box-column corner is a double groove type, and the optimum angle for the groove is 30~$45^{\circ}$ that minimize deformation and weld stress at the center segregation.

Design and Weldability Verification of the 40kHz Horn for Ultrasonic Metal Welding (초음파 금속 용착용 40kHz 혼의 설계와 용착성 평가)

  • Jang, Ho Su;Park, Woo Yeol;Park, Dong Sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.2
    • /
    • pp.55-61
    • /
    • 2013
  • The horn is a key part of the ultrasonic welder. As the shape, mass and material of a horn have effects on the resonant frequency and the vibration mode in ultrasonic welding, a horn has to be designed and manufactured accurately. In this study, 40kHz band horn was designed and manufactured through the vibration mode and finite element analysis. A result of modal analysis showed that the natural frequency of the horn was 39,794Hz, and the frequency response by a harmonic response analysis was 39,800Hz - close to the intended frequency, 40kHz. In addition, weldability of the developed horn was estimated by welding of two Ni sheets and tensile-shear test of welded samples. It was shown the developed horn could be used in metal sheet welding.

Mechanical Properties for Welding Part on Ni Base Superalloy Material According to Heat Treatment Parameters (열처리조건에 따른 Ni기지 초합금 용접부의 기계적 특성)

  • Yang, Sung-Ho;Park, Sang-Yeol;Choi, Hee-Sook;Ko, Won;Chae, Na-Hyun;Kim, Moon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.525-531
    • /
    • 2007
  • The operating temperature has been increased to improve the efficiency of gas turbine. The most advanced Gas turbine is operated at above $1,500^{\circ}C$. Improvement in material and cooling method permit hot gas path component to run at increased temperature. But, the repair of blades which are developed with advanced manufacture technique is difficult to use normal welding. Most of gas turbine blades are made of precipitation harden nickel base superalloy, which is very hard to weld. Therefore, the employment of welding filler on blade is solid solution nickel base superalloy(Hastelloy X, Inconel 617). In this study, Tensile test in high temperature was conducted on welded GTD111DS with GTD111 to evaluate effect of variation of pre, post treatment. The result of this study showed that the specimen was treated with optimum pre and post treatment(preweld HT($1200^{\circ}C$), Post treatment($1100^{\circ}C$ HIP, $1200^{\circ}C$ + $1100^{\circ}C$ + $800^{\circ}C$ HT) is mush superior.

A Study on the Welding Deformations and Residual Stresses for Circumferential Welded Cylinders (원통의 용접변형 및 잔류응력에 대한 연구)

  • K.Y. Yoo;D.S. Um
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.55-64
    • /
    • 1998
  • Using blind hole drilling method the residual stresses and welding deflections are measured for the cylindrical shell with various heat inputs and cylinder diameters. As a result, it is verified that the axial and hoop residual stresses which are generated near the weld part of cylinders are increased, as the heat inputs and cylinder diameters are increased. And experimental results show good agreements with those of precedent researchers. In this paper, it is validated that dominant parameters, heat input Q and the dimension of cylinder h/D have some effects on the magnitude and distribution of axial and hoop residual stresses and welding deflections. The empirical equations of residual stresses and welding deflections are made by using multiple linear regression with experimental results.

  • PDF

Lightweight Automobile Design with ULSAB Concept Using Structural Optimization (구조 최적설계 기법을 이용한 초경량차체 개념의 경량 자동차 설계)

  • 신정규;송세일;이권희;박경진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.277-286
    • /
    • 2001
  • Among the ULSAB methods for the lightweight automobile body, Tailor Welded Blank(TWB) is adopted and the design process is developed for the existing component. Topology optimization conducted to find the distribution of the variable thickness. The number of parts and the welding lines are determined from it. In the detail design, size optimization is carried out to find the optimum thickness of each part and then, the final parting lines are tuned by shape optimization. A commercial optimization software GENESIS is utilized for the optimization processes.

  • PDF