• Title/Summary/Keyword: Welded joints

Search Result 596, Processing Time 0.027 seconds

Crack growth analysis and remaining life prediction of dissimilar metal pipe weld joint with circumferential crack under cyclic loading

  • Murthy, A. Ramachandra;Gandhi, P.;Vishnuvardhan, S.;Sudharshan, G.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2949-2957
    • /
    • 2020
  • Fatigue crack growth model has been developed for dissimilar metal weld joints of a piping component under cyclic loading, where in the crack is located at the center of the weld in the circumferential direction. The fracture parameter, Stress Intensity Factor (SIF) has been computed by using principle of superposition as KH + KM. KH is evaluated by assuming that, the complete specimen is made of the material containing the notch location. In second stage, the stress field ahead of the crack tip, accounting for the strength mismatch, the applied load and geometry has been characterized to evaluate SIF (KM). For each incremental crack depth, stress field ahead of the crack tip has been quantified by using J-integral (elastic), mismatch ratio, plastic interaction factor and stress parallel to the crack surface. The associated constants for evaluation of KM have been computed by using the quantified stress field with respect to the distance from the crack tip. Net SIF (KH + KM) computed, has been used for the crack growth analysis and remaining life prediction by Paris crack growth model. To validate the model, SIF and remaining life has been predicted for a pipe made up of (i) SA312 Type 304LN austenitic stainless steel and SA508 Gr. 3 Cl. 1. Low alloy carbon steel (ii) welded SA312 Type 304LN austenitic stainless-steel pipe. From the studies, it is observed that the model could predict the remaining life of DMWJ piping components with a maximum difference of 15% compared to experimental observations.

A Study on the Behavioral Characteristics of Bellows for Expansion Joints (신축이음용 벨로우즈의 거동특성에 관한 연구)

  • Jeong, Doo-Hyung;Chin, Do-Hun;Kim, Byung-Tak
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.52-58
    • /
    • 2020
  • Bellows are corrugated mechanical elements used to absorb displacements or vibrations caused by temperature changes, pressure, earthquakes, waves, etc., which are welded to flanges or directly connected to pipes. Expansion joint bellows must not only be designed to sufficiently withstand the internal pressure of the pipes but also accommodate axial, transverse, and rotational deformations to minimize the transfer of forces to the sensitive components of the system. Bellows have various types of corrugations, but U-type bellows are most commonly used in general piping systems. In this study, the behavior of U-shaped one-, two-, and three-ply bellows with the same inner diameter under pressure and forced displacement was analyzed using the finite element method. The results were compared with the design formula in the Expansion Joint Manufacturers Association (EJMA)'s code. Manufacturer data were used for the applied pressure and force displacement. The behavioral characteristics of the three cases were compared via structural analysis because the stress levels will be different for each model, even if they have the same inner diameter. Since the analytical model has an axisymmetric shape but displacement occurs in the transverse direction, the finite element model was composed of 1/2 of the whole model, and ANSYS Workbench 17.2 was employed for the analysis.

Evaluation of Three Support Shapes on Behavior of New Bolted Connection BBCC in Modularized Prefabricated Steel Structures

  • Naserabad, Alifazl Azizi;Ghasemi, Mohammad Reza;Shabakhty, Naser;Arab, Hammed Ghohani
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1639-1653
    • /
    • 2018
  • Bolted connections are suitable due to high quality prefabrication in the factory and erection in the workplace. Prefabrication and modularization cause high speed of erection and fabrication, high quality and quick return of investment. Their technical hitches transportation can be removed by prefabrication of joints and small fabrication of components. Box-columns are suitable members for bolted structures such as welded steel structures with moment frames in two directions etc., but their continual fabrication in multi-story buildings and performing the internal continuity plate in them will cause some practical dilemmas. The details of the proposal technique introduced here, is to remove such problems from the box columns. Besides, some other advantages include new prefabricated bolted beam-to-column connections referred to BBCC. This connection is a set of plates joined to columns, beams, support, and bolts. For a better understanding of its fabrication and erection techniques, two connection and one structural maquettes are made. The present work aims to study the cyclic behavior of connection numerically. To verify the accuracy of model, a similar tested connection was modelled. Its verification was then made through comparison with test results. The behavior of connection was evaluated for an exterior connection using three different support shapes. The effects of support shapes on rigidity, ductility, rotation capacity, maximum strength, four rad rotation strength were compared to those of the AISC seismic provision requirements. It was found that single beams support has all the AISC seismic provision requirements for special moment frames with and without a continuity plate, and box with continuity plate is the best support in the BBCC connection.

Analysis of Residual Stress through a Recovery Factor of Remnant Indents Formed on Artificially Stressed Metallic Glass Surfaces (응력상태의 비정질 표면에 형성된 압입흔적 회복인자를 이용한 잔류응력 분석)

  • Lee, Yun-Hee;Yu, Ha-Young;Baek, Un-Bong;Nahm, Seung-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.203-209
    • /
    • 2010
  • An application of the instrumented indentation technique has been expanded from the measurements of hardness and elastic modulus to the analysis of residual stress. A slope of the indentation loading curve increases (or decreases) according to compressive (or tensile) residual stress. A theoretical equation has been established for quantifying residual stress from the slope change. However, a precise observation of the remnant indents is indispensible because the theoretical approach needs actual contact information. In addition, the conventional hardness test is still used for predicting the residual stress distribution of welded joints. Thus, we observed the three-dimensional morphologies of the remnant indents formed on artificial stress states and analyzed stress effects on morphological recovery of the indents. First, a depth recovery ratio, which has been regarded as a sensitive stress indicator, did not show a clear dependency with the residual stress. Thus an analysis on volumetric recovery was tried in this study and yielded a inverse proportional behavior with the residual stress. In addition, an elastic to plastic volume recovery ratio showed more significant correlation with the residual stress.

Weld Characteristic Analysis for Weld Process Variables of Tip-Rotating Arc Welding in Butt Joint of Shipbuilding Steels (조선용 강재의 맞대기 이음에서 팁회전 아크 용접의 공정 변수에 따른 용접 특성 분석)

  • Lee, Jong Jung;Ahn, Sang Hyun;Park, Young Whan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.105-112
    • /
    • 2021
  • Reduction of weld distortions and increase in productivity are some of the major goals of the shipbuilding industry. To address these issues, many researchers have attempted to apply new welding processes. In the shipbuilding industry, steel is the candidate material of choice owing to its good weldability. However, conventional welding techniques are not feasible for avoiding welding problems. Tip-rotating arc welding is one of the high-efficiency welding process that has several advantages, such as high welding speed, high melting rate, low heat input, and less distortion. The present study investigates the influence of the welding variables on the weld characteristics of tip-rotating arc welding. Welding was performed using EH36 as the base metal and SM-70s as the filler metal, which are widely used in shipbuilding. Basic experiments were conducted to understand the effects of the major welding variables, such as welding and tip-rotating speeds. The distortion and mechanical properties of the optimal welding conditions were used to evaluate the tip-rotating arc welding performance. Consequently, the feasibility of the tip-rotating arc welding process for joining steel components was investigated, so that the optimized welding conditions could be applied directly to ship body welding to enhance the quality of the welded joints.

Distribution and Petrology of the Columnar Joint in South Korea (남한에서 주상절리의 분포와 암석학적 특성)

  • Ahn, Kun Sang
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.45-59
    • /
    • 2014
  • This study has been designed to collate distribution, morphology, petrology of columnar joint in South Korea. Reported columnar joint areas in South Korea are 68, until the present time. These can be divided into five group by geography and volcanic activity. 1) The 16 columnar joint areas are distributed in Hantangang region. The 15 areas in this region are composed of basaltic lava in the Quaternary period, and the other 1 area is composed of volcanic rocks in the Cretaceous period. 2) The 18 columnar joint areas are distributed in Jeju island. Most of them are composed of basaltic lava(alkali basalt and Hawaiite), and the Sanbangsan and Baegrokdam area are composed of trachyte in the Quaternary period. Colonnade, entablature and chisel mark of the columnar joint are typically occur in basaltic lava. 3) The 5 columnar joint areas are distributed into the Ulleung island and Dokdo including Guksubawi. These are consisted of relatively well-formed trachyte columns in the Quaternary period. 4) The 8 columnar joint areas are distributed into the Pohang, Gyeongju and Ulsan region and consist of the Tertiary period volcanic rock. It's shape are dome, radial, horizontal and vertical. The 4 columnar joint areas are reported in the Pyeongtaek and Asan city of Chungcheongnamdo and Gosung of Gangwondo. All of them are the Tertiary period basalt. 5) The 15 columnar joint areas are distributed into the west and south coast region. Those are consisted of various rock type(from basalt to dacite), various occurrences(lava flow to welded tuff), and various diameters(20 cm to several meters). The columnar joint of Mudeung mountain and Juwang mountain are welded tuff in the Cretaceous period. The columnar joint is distributed over a wide area in South Korea, 5 in Gangwondo, 13 in Gyeonggido, 2 in Chungnam, 14 in Gyeongbuk, 1 in Jeonbuk, 10 in Jeonnam, 5 in Gyeongnam, and 18 in Jeju. The columnar joints in South Korea can be arranged in order of formative period, 18 in the Cretaceous period, 12 in the Tertiary period, and 38 in the Quaternary period. By magma series, 36 are belong to alkaline series and 32 are belong to sub-alkaline series.

Proposal of Estimation Equation for Nominal Strength of Longitudinal Fillet Welds with Different Types of Steel (강종에 따른 종방향 필릿용접부 공칭강도 계산식의 제안)

  • Jo, Jae-Byung;Lee, Hye-Youn
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.503-510
    • /
    • 2012
  • High performance, high strength steels were developed and used in steel structures recently. Since the newly developed high strength steels posses different toughness, weldability, yield strength ratio, etc. in compare with conventional structural steels, it is requred to investigate the applicability of the design strength of fillet weld specified in the existing design codes. The comparison of the design strengths of various codes from domestic and overseas shows quite a difference. Test results for fillet weld strengths were collected and statistically analysed. Each of yield strength, tensile strength of parent material and tensile strength of weld metal was selected as a main parameter for each estimation equation respectively. All the estimation equations yield almost same values for each type of steel regardless the type of main parameter selected. Considering the behaviour of fillet welded joints and for practical purposes, it is proposed that the equation with tensile strength of parent material is to be used in design codes. The comparison with the proposed nominal strengths of fillet welds shows that the existing design codes could lead to an uneconomical result for low strength steels and lie on an unsafe side for high strength steels.

A Study on Tensile Restraint Crack Critical Stress Characteristcs of Gravity-Wet-Type Underwater Welded Joints (중력식 습식 수중용접부의 인강구속균열 임계응력 특성에 관한 연구)

  • O, Se-Gyu;Gang, Mun-Ho;Han, Sang-Deok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.61-65
    • /
    • 1987
  • In this study, the characteristics of TRC (tensile restraint crack) critical stress in the gravity type underwater wet welding process and in the in-air welding have been investigated for Y, y and 45$^{\circ}$r grooves using the KR Grade A-3 steel plates and the E4303 covered electrodes. The following results were obtained: (1) In the TRC tests, the initial critical stress of Y groove is higher than those of the 45$^{\circ}$r single bebel grooves in both in-air and underwater weldings, and the cold fracture sensitivity is higher in the underwater welding than in the in-air welding. (2) The hardness of underwater weld metal is the highest in heat affected zone is about Hk 365 in the in-air weld but Hk 670 in the underwater weld which is higher for cooling speed is more rapid, resulting in the lower critical stress by increase of fracture sensitivity. (3) The diffusible hydrogen quantity for 48 hours is about 18cc/100g-weld-metal in the in-air welding but 48cc/100g-weld-metal in the underwater welding. So that, in the case of underwater welding the diffusible hydrogen penetrates about 3 times more than that in the in-air welding.

  • PDF

A Study on Tensile Restraint Crack Critical Stress Characteristcs of Gravity-Wet-Type Underwater Welded Joints (중력식 습식 수중용접부의 인강구속균열 임계응력 특성에 관한 연구)

  • Sae Kyoo Oh;Moon Ho Kang;Sang Deok Han
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.15-15
    • /
    • 1987
  • In this study, the characteristics of TRC (tensile restraint crack) critical stress in the gravity type underwater wet welding process and in the in-air welding have been investigated for Y, y and 45°r grooves using the KR Grade A-3 steel plates and the E4303 covered electrodes. The following results were obtained: (1) In the TRC tests, the initial critical stress of Y groove is higher than those of the 45°r single bebel grooves in both in-air and underwater weldings, and the cold fracture sensitivity is higher in the underwater welding than in the in-air welding. (2) The hardness of underwater weld metal is the highest in heat affected zone is about Hk 365 in the in-air weld but Hk 670 in the underwater weld which is higher for cooling speed is more rapid, resulting in the lower critical stress by increase of fracture sensitivity. (3) The diffusible hydrogen quantity for 48 hours is about 18cc/100g-weld-metal in the in-air welding but 48cc/100g-weld-metal in the underwater welding. So that, in the case of underwater welding the diffusible hydrogen penetrates about 3 times more than that in the in-air welding.

A Study of Structural Stress Technique for Fracture Prediction of an Auto-Mobile Clutch Snap-Ring (클러치 스냅링부 파괴 예측을 위한 구조응력기법 연구)

  • Kim, Ju Hee;Myeong, Man Sik;Oh, Chang Sik;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.175-183
    • /
    • 2016
  • The endurance reliability assessment of a highly complex mechanism is generally predicted by the fatigue life based on simple stress analysis. This study discusses various fatigue life assessment techniques for an automobile clutch snap ring. Finite element analyses were conducted to determine the structural stress on the snap ring. Structural stress that is insensitive in regards to the mesh size and type definition is presented in this study. The structural stress definition is consistent with elementary structural mechanics theory and provides an effective measure of a stress state that pertains to fatigue behavior of welded joints in the form of both membrane and bending components. Numerical procedures for both solid models and shell or plate element models are presented to demonstrate the mesh-size insensitivity when extracting the structural stress parameters. Conventional finite element models can be used with the structural stress calculations as a post-processing procedure. The two major implications from this research were: (a) structural stresses pertaining to fatigue behavior can be consistently calculated in a mesh-insensitive manner regardless of the types of finite element models; and (b) by comparing with the clutch snap-ring fatigue test data, we should predict the fatigue fractures of an automobile clutch snap ring using this method.