• Title/Summary/Keyword: Welded Beam

Search Result 312, Processing Time 0.028 seconds

A Study on the Simplified Method to Calculate the Compressive Strength of Welded Structures (용접 구조물 압축강도의 간이해석에 관한 연구)

  • 서승일
    • Journal of Welding and Joining
    • /
    • v.18 no.4
    • /
    • pp.87-95
    • /
    • 2000
  • Residual stresses and deformations due to welding have effects on the strength of structures. In this paper, the compressive strength of basic welded structures is studied and the effects of the residual stresses and deformations on the compressive strength of beams, plates and shells are investigated,. Theoretical analysis for the basic structures is carried out and simplified methods to calculate the compressive strength are proposed. The proposed methods yield simple formulas to calculate the compressive strength, of which results are much helpful. The accuracy of the proposed method is revealed by comparison with experimental results.

  • PDF

Characterization of electron beam (EB) welds for SUS310S

  • Kim, Hyun-Suk;Castro, Edward Joseph D.;Lee, Choong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.360-360
    • /
    • 2011
  • In this work, SUS310S used for valve plate assembly was electron beam (EB) welded to determine the influence of the parametric conditions on the characteristics of the weld and to minimize porosity and micro-fissures among others. The evolution in the weld geometry and microstructure was examined as a function of the process conditions such as beam current and focusing current under a constant welding speed and accelerating voltage. The integrity of the EB welds in SUS310S was examined for defects (e.g. cracking, porosity, etc.), adequate penetration depth, and tolerable weld width deviation for the various welding conditions. Optical microscopy (OM), x-ray photoelectron spectroscopy analysis (XPS), scanning electron microscopy (SEM) and 3D micro-computed tomography (Micro-CT) for the cross section analysis of the electron beam welded SUS310S were utilized. The tensile strength and hardness were analyzed for the mechanical properties of the EB weld. At the 6 kV accelerating voltage, it was determined that a satisfactory penetration depth and desirable weld width deviation requires a beam current of 30 mA and a focusing current of 0.687 A at the welding speed of 25 mm/sec.

  • PDF

Finite Element Analysis for the Failure Mode of Welded Flange-Bolted Web Connection (Welded Flange-Bolted Web 강접합부의 파괴모드 추정을 위한 유한요소해석)

  • 조창빈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.4
    • /
    • pp.33-46
    • /
    • 1999
  • In spite of 6.8 magnitude and the neighborhood of the epicenter, the steel moment frame survived after Northridge earthquake without collapse or casualties. However, following investigation revealed that there were severe damages at the column-weld interface of welded flange-bolted web (WFBW) steel moment connection, which was believed to be economic and safe from earthquakes based on experience and past tests. In this paper, this unexpected brittle fracture of the steel moment connection is explored using linear elastic fracture mechanics and post-Northridge tests. A method to predict the brittle fracture strength of the steel moment connection is proposed. Using this method, the failure mode of the WFBW connection and reduced beam section (RBS) connection are presented.

  • PDF

A study on manufacturing of laser welded tube from 60kgf/$mm^2$Grade Steel Sheet for one-body forming (60kgf/$mm^2$급 일체화 성형용 레이저 용접 튜브 제조에 관한 연구)

  • Seo, Jung;Lee, Je-Hoon;Kim, Jung-Oh;Kang, Hee-Sin;Lee, Mun-Yong;Jung, Byung-Hoon
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.18-20
    • /
    • 2003
  • Optimal processing and system to produce the laser welded tube for one body formed bumper beam are studied. The calculated size of tube is a thickness of 1.4mm, diameter of 105.4mm and length of 2000mm. The tube is shaped from cool rolled high strength steel sheet(tensile strength: 60kgf/$\textrm{mm}^2$ grade). Two roll bending method is the optimal tube shaping process compared to UO-bending, bending on press brake, multi-step continuous roll forming and 3 roll bending methods. Weld quality monitoring and seam tracking along the butt-joint lengthwise to the tube axis are also studied. The longitudinal butt-joint is welded by the $CO_2$ laser welding system equipped with a seam tracker and plasma sensor. The constructed $CO_2$ laser tube welding system can be used for the precision seam tracking and the real-time monitoring of weld quality. Finally, the obtained laser welded tube can be used for one-body formed automobile bumper beam.

  • PDF

Effect of Heat Treatment on Joint Strength of 300Grade 18% Ni Maraging Steel Sheet Welded with Electron Beam (전자비임 용접된 300Grade 18% Ni 마르에이징강 박판의 이음강도에 미치는 열처리의 방향)

  • Jung, B.H.;Kim, H.G.;Kang, S.B.;Kim, W.Y.;Park, H.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.4
    • /
    • pp.185-193
    • /
    • 1993
  • The effect and Condition of heat treatment on the tensile strength of welded joint was investigated in 300 grade 18% Ni-Co-Mo-Ti maraging steel sheets welded with electron beam. A good tensile strength of welded joint was obtained by following heat treatment cycle ; At $1100^{\circ}C$ the specimen was high temperature solution treated for 1 hour and then it was repeated solution treated at $900^{\circ}C$, $820^{\circ}C$ for 1 hour respectively to recrystallize the coarsened ${\gamma}$ grain. These heat treatment cycle was completed by an final aging heat treatment at $480^{\circ}C$ for 4 hour. Moreover, dissolution of dendrite, a significant decrease in seregation of Mo, Ti in weld metal were observed and also the coarsened ${\gamma}$ grain formed at $1100^{\circ}C$, $1200^{\circ}C$ changed to fine grain due to the effect of recrystallization.

  • PDF

MECHANICAL PROPERTIES OF TITANIUM CONNECTORS TREATED BY VARIOUS WELDING TECHNIQUES (용접방법에 의한 타이타늄 연결부의 기계적 성질에 관한 연구)

  • Lee, Soo-Young;Chang, Ik-Tae;Heo, Seong-Joo;Yim, Soon-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.5
    • /
    • pp.545-566
    • /
    • 1999
  • The use of pure titanium and titanium alloys have been increased recently in fixed, removable prosthodontics and implant fields as a framework. But when they were used for superstructures of implant or metal framework of removable prosthesis, welding is necessary to reconnect the fracture site to control the casting distortions. To overcome the difficulties in soldering the titanium due to high oxidation property, much effort have been devoted. In this study, some of mechanical properties were compared between pure titanium and Ti-6Al-4V alloy by using after welding, electron beam welding technique and tungsten arc welding. Mechanical properties such as tensile strength, yield strength, elongation and microhardness were measured. And, in order to compare the effect of welding site and surrounding metal tissue according to the welding condition, SEM photographs were taken and element distribution was observed by Wave Dispersion Spectroscopy. Through analyses of the data, following results were obtained; 1. In items such as tensile strength, yield strength and elongation according to the welding techniques of pure titanium, only tungsten arc welded group showed significant lower value than other groups(P<0.05). 2. In items such as tensile strength and yield strength according to the welding techniques of Ti-6Al-4V alloy, control group and tungsten arc welded group showed significant difference among all the groups(P<0.05). 3. Ti-6Al-4V alloy exhibited significantly greater elongation than control group when the laser welding method and electron beam welding method were used, and elongation showed increasing tendency. 4. Pure titanium specimens exhibited increasing tendency of microhardness regardless of the weld-ing technique applied, and especially tungsten arc welded group demonstrated a great increase of microhardness than parent metal. 5. There was no hardness change in laser welded group and electron beam welded group of Ti-6Al-4V alloy, but in tungsten arc welded group, hardness changed greatly from parent metal to weld seam. 6. Through the metallographic examination and scanning electron microscopy, laser welding caused central fusion and recristallizations were formed and tungsten arc welding caused localized fusion to 0.3-0.7mm from the surface.

  • PDF

QUALITY ASSURANCE IN LASER-BEAM WELDING OF HEAVY SECTION STEEL SHEET

  • Dahmen, M.;Kaierle, S.;Kapper, G.;Michel, J.;Schulz, W.;Spielvogel, K.;Poprawe, R.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.589-594
    • /
    • 2002
  • In manufacturing of welded parts which require a proof on acceptance close observation of the process is mandatory. The manufacturer is obliged to document the welding process. An approach for monitoring and recording the process of laser beam welding combining theoretical knowledge, process monitoring and welding experience will be presented. The range of application of a device for co-axial process monitoring was extended up to 20 mm sheet thickness welded in one pass at beam powers of up to 20 kW. Crucial features of the process which refer to the formation of failures were observed. The results presented give rise to the general applicability of the approach for process monitoring and recording as well as failure management.

  • PDF

Analysis For Effective Moment For Iinertia For Corrugated Steel-Concrete Composite Deck with I-beam Welded (교량용 I형강 접합 절곡강합성 바닥판의 휨강성 분석)

  • Son, Chang-Du;Park, Jun-Myung;Han, Kyung-Bong;Kim, Jun-Won;Lee, Jae Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.209-212
    • /
    • 2008
  • Corrugated steel-concrete composite deck with I-beam welded is lighter and has higher load carrying capacity than RC slabs due to an I-beam embedded in the corrugated deck. The methods suggested from ACI and design standard of roadway bridge are used to evaluate effective moment inertia of RC structures. This paper presents evaluation and application of effective moment inertia for corrugated steel-concrete composite deck with I-beam welded by using the methods suggested from design standard of roadway bridge, ACI and CEB-FIP MC-90. In order to evaluate effective moment inertia, a series of flexural experiments were carried out. Five beams were built and the parameters considered in the experiments were studs, shape of the sections and connections of the beams. By using the aforementioned methods, effective moments of inertia was calculated and they were compared with the experimental results. As a result, The method suggested from CEB-FIP MC-90 yielded more satisfactory agreement than that from ACI. It was found that the beam has studs showed high load-carrying capacity and high effective moment of inertia.

  • PDF

Shear behavior of the hollow-core partially-encased composite beams

  • Ye, Yanxia;Yao, Yifan;Zhang, Wei;Gao, Yue
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.883-898
    • /
    • 2022
  • A hollow-core partially-encased composite beam, named HPEC beam, is investigated in this paper. HPEC beam comprises I-beam, longitudinal reinforcement, stirrup, foam formwork, and cementitious grout. The foam formwork is located on both sides of the web, and cementitious grout is cast within the steel flange. To investigate the shear performance of HPEC beams, static loading tests of six HPEC beams and three control beams were conducted. The shear span ratio and the number of studs on the shear behavior of the HPECspecimens were studied. The failure mechanism was studied by analyzing the curves of shear force versus both deflection and strain. Based on the shear span ratio (𝜆), two typical shear failure modes were observed: shear compression failure when 1.6 ≤ 𝜆 ≤ 2; and diagonal compression failure when 𝜆 ≤ 1.15. Shear studs welded on the flange can significantly increase the shear capacity and integrity of HPEC beams. Flange welded shear studs are suggested. Based on the deformation coordination theory and superposition method, combined with the simplified modified compression field model and the Truss-arch model, Modified Deformation Coordination Truss-arch (M.D.C.T.) model was proposed. Compared with the shear capacity from YB9038-2006 and JGJ138-2016, the calculation results from M.D.C.T. model could provide reasonable predictions.

Study on the Performance of Laser Welded joint of Aluminum alloys for Car Body

  • Kutsuna, Muneharu;Kitamura, Shuhei;Shibata, Kimihiro;Salamoto, Hiroki;Tsushima, Kenji
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.620-625
    • /
    • 2002
  • Considering the fuel consumption of car, a light structure of aluminum alloys is desired for car body nowadays. However, fusion welding of aluminum alloys has some problems of reduction of joint efficiency, porosity formation and hot cracking. ill the present work, investigation to improve the joint performance of laser welded joint has been carried out by addition of Cu, Ni, and Zr to A6N01 alloy welds. Aluminum alloy plate of 2.0mm in thickness with filler metal bar was welded by twin beam Nd:YAG laser facility (total power:5kW). The filler metals were prepared by changing the chemical compositions for adding the elements into the weld metal. Thirteen filler metal bars were prepared and pre-placed into the base metal before welding. Ar gas shielding with a flow rate of 10 l/min was used. The defocusing distance is kept at 0 mm. At travel speeds of 3 to 9 m/min and at laser power of 5kW (front beam 2kW rear beam 3kW), full penetration welds were obtained, whereas at travel speeds of 12 to 18 m/min and same power, partial penetration was observed. The joint efficiency of laser-welded joint was improved by the addition of Cu, Ni, and Zr due to the solid solution hardening, grain refining and precipitation hardening. The type of hardening has been further considered by metallurgical examination.

  • PDF