• Title/Summary/Keyword: Weld thermal cycle simulation

Search Result 8, Processing Time 0.033 seconds

Evaluation of Characteristic for SS400 and STS304 Steel by Weld Thermal Cycle Simulation - 3rd Report: Residual Stress and Ultrasonic Parameter (용접열사이클 재현에 의한 SS400강 및 STS304강의 특성 평가 - 제3보: 잔류응력과 초음파 파라미터)

  • Ahn, Seok-Hwan;Choi, Moon-Oh;Jeong, Jeong-Hwan;Kim, Sung-Kwang;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.27-34
    • /
    • 2008
  • The temperature distribution in the weldment is not uniform because a weldment is locally heated. Thermal plastic deformation results from the local expansion and shrinkage by the heating and cooling of metal. Therefore, residual stresses and distortion occur in the weldment. In this study, we had conducted on the weld thermal cycle simulation that is supposed as the HAZ on SS400 steel and STS304 steel. The residual stresses that were obtained from the drawing and the weld thermal cycle simulation were estimated by X-ray diffraction. We also carried out ultrasonic test for the weld thermal cycle simulated specimens, and then conducted on nondestructive evaluation by the ultrasonic parameters obtained ultrasonic test. From the results, residual stresses of weld thermal cycle simulated specimens after the residual stress removal heat treatment are lower than that of the drawing.

Evaluation of Characteristic for SS400 and STS304 steel by Weld Thermal Cycle Simulation - 1st Report : on the Mechanical Properties and Microstructure (용접열사이클 재현에 의한 SS400강 및 STS304강의 특성 평가 - 제1보 : 기계적 특성 및 조직)

  • Ahn, Seok-Hwan;Jeong, Jeong-Hwan;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.64-71
    • /
    • 2005
  • The welding methods have been applied to the most structural products used in the automobile, ship construction, and construction. The structure steel must have sufficient strength of structure; However, the mechanical properties of the welded part changes when it is welded. Therefore, the stability or life of the structure may be affected by the changed mechanical properties. The mechanical properties of the welded part must be examined in order to ensure the safety of structure. In this research, the SS400 steel and the STS304 steel were used to estimate the mechanical properties of the HAZ by weld thermal cycle simulation. In this study, the materials were used to examine the weld thermal cycle simulation characteristic, under two conditions: the drawing with diameter of $\Phi$10 and the residual stress removal treatment. To examine the mechanical properties by the weld thermal cycle simulation, the tensile test was carried out in room temperature. The crosshead speed was lmm/min.

Evaluation of Characteristic for SS400 and STS304 steel by Weld Thermal Cycle Simulation - 2nd Report: Corrosion Characteristics (용접열사이클 재현에 의한 SS400강 및 STS304강의 특성 평가 -제2보: 부식특성)

  • Ahn, Seok-Hwan;Choi, Moon-Oh;Kim, Sung-Kwang;Son, Chang-Seok;Nam, Ki-Wook
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.33-38
    • /
    • 2007
  • The welding methods have been applied in the most structural products from multi-field of automobile, ship construction and construction, and so on. The structure steel must have enough strength of structure. In this study, SS400 steel and STS304 steel were used to estimate the corrosion characteristics of the weld thermal cycle simulated HAZ. To evaluate the corrosion characteristics, also, the materials with two conditions were used in 3.5% NaCl. The one is to the drawing with diameter of ${\Phi}10$ and the other is to the residual stress removal treatment. The electrochemical polarization test and immersion test were carried out. From test results, corrosion potential, corrosion current density, weight loss ratio and corrosion rate were measured. In the kinds of SS400 steels, corrosion potential of weld thermal cycle simulated specimens after the heat treatment showed somewhat the direction of noble potential. And in the base metal to be drawing weight loss ratio and corrosion rate occurred higher than the other kinds. In the kinds of STS304 steels, the result of base metal to be drawing was similar to results of SS400 steels, too. Two kinds of $750^{\circ}C$ and $1300^{\circ}C$ of weld thermal cycle simulation after the heat treatment were rather higher than the other kinds in weight loss ratio and corrosion rate.

Effect of Restraint Stress on the Precipitation Behavior and Thermal Fatigue Properties of Simulated Weld Heat Affected Zone in Ferritic Stainless Steel (페라이트계 스테인리스강 재현 용접 열 영향부의 석출거동 및 열피로 특성에 미치는 구속응력의 영향)

  • Han, Kyutae;Kang, Yongjoon;Lee, Sangchul;Hong, Seunggab;Jeong, Hongchul;Lee, Changhee
    • Journal of Welding and Joining
    • /
    • v.33 no.6
    • /
    • pp.6-12
    • /
    • 2015
  • Thermal fatigue life of the automobile exhaust manifold is directly affected by the restraint force according to the structure of exhaust system and bead shape of the welded joints. In the present study, the microstructural changes and precipitation behavior during thermal fatigue cycle of the 18wt% Cr ferritic stainless steel weld heat affected zone (HAZ) considering restraint stress were investigated. The simulation of weld HAZ and thermal fatigue test were carried out using a metal thermal cycle simulator under complete constraint force in the static jig. The change of the restraint stress on the weld HAZ was simulated by changing the shape of notch in the specimen considering the stress concentration factor. Thermal fatigue properties of the weld HAZ were deteriorated during cyclic heating and cooling in the temperature range of $200^{\circ}C$ to $900^{\circ}C$ due to the decrease of Nb content in solid solution and coarsening of MX type precipitates, laves phase, $M_6C$ with coarsening of grain and softening of the matrix. As the restraint stress on the specimen increased, the thermal fatigue life was decreased by dynamic precipitation and rapid coarsening of the precipitates.

Weld Residual Stress According to the Ways of Heat Input in the Simulation of Weld Process using Finite Element Analysis (유한요소법을 이용한 용접공정 모사 시 입열 방법에 따른 용접잔류응력의 영향)

  • Yang, Jun-Seog;Park, Chi-Yong;Lee, Kyoung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.98-103
    • /
    • 2008
  • This paper is to discuss distribution of welding residual stresses of a ferritic low alloy steel nozzle with dissimilar metal weld using Alloy 82/182. Two dimensional (2D) thermo-mechanical finite element analyses are carried out to simulate multi-pass welding process on the basis of the detailed and fabrication data. On performing the welding analysis generally, the characteristics on the heat input and heat transfer of weld are affected on the weld residual stress analyses. Thermal analyses in the welding heat cycle process is very important process in weld residual stress analyses. Therefore, heat is rapidly input to the weld pass material, using internal volumetric heat generation, at a rate which raises the peak weld metal temperature to $2200^{\circ}C$ and the base metal adjacent to the weld to about $1400^{\circ}C$. These are approximately the temperature that the weld metal and surrounding base materials reach during welding. Also, According to the various ways of appling the weld heat source, the predicted residual stress results are compared with measured axial, hoop and radial through-wall profiles in the heat affected zone of test component. Also, those results are compared with those of full 3-dimensional simulation.

  • PDF

Residual Stress of the Lower Control Arm Subjected to Cyclic Loading (변동하중을 받는 Lower Control Arm의 잔류응력 변화)

  • Kim Gi-Hoon;Kang Woo-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.602-608
    • /
    • 2006
  • Vehicle components such as lower control arm are usually affected by heat during the welding process. As a result, residual stress is generated, which has much effect on mechanical performances such as crashworthiness and durability. In this study, the residual stress in lower control arm has been measured by the x-ray diffraction method and been analyzed by finite element methods. Heat transfer during seam weld process has been calculated and used in calculating thermal deformation with temperature dependent material properties. High residual stress has been found at vertical wall both by measurement and simulation. The simulation also showed the residual stress re-distribution when the component is subjected to cyclic loading condition.

Weldability of 12% Cr steel by thermally simulated HAZ (열 영향부의 시물레이션에 의한 12% Cr강의 용접성 평가)

  • 김재도
    • Journal of Welding and Joining
    • /
    • v.4 no.2
    • /
    • pp.40-46
    • /
    • 1986
  • This investigation is concerned with the toughness and microstructure of manneristically simulated HAZ in 12% Cr steel. Unnotched specimens were subjected to weld thermal cycles a weld simulator. The parameters-peak temperatures, cooling rate, influence of PWHT and plastic deformation were considered. After weld simulation, the specimens were heat-treated, V-notched and impact tested. An optical metallographic examination was performed to correlate the HAZ toughness with microstructure. Also a fractographic examination was done to obtain information on the fracture mode. The toughness of the coarse grained zone and the part of HAZ subjected to a peak temperature range 700-800.deg. C are lower than the other parts. However, they are still high enough. The double PWHT cycle could not improve the HAZ toughness in present study. However, if the first PWHT is conducted before the work piece is cooled below $M_f$, it is expected that the double PWHA may be beneficial to the toughness of the HAZ. It is also expected that martensitic welding can be used on production welds.

  • PDF

An Investigation on the Microstructure Evolution and Tensile Property in the Weld Heat-Affected Zone of Austenitic FeMnAlC Lightweight Steels (오스테나이트계 FeMnAlC 경량철강의 용접열영향부 미세조직 변화 및 인장특성에 관한 연구)

  • Moon, Joonoh;Park, Seong-Jun
    • Journal of Welding and Joining
    • /
    • v.35 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • IMicrostructure evolution and tensile property in the weld heat-affected zone (HAZ) of austenitic Fe-30Mn-9Al-0.9C lightweight steels were investigated. Five alloys with different V and Nb content were prepared by vacuum induction melting and hot rolling process. The HAZ samples were simulated by a Gleeble simulator with welding condition of 300kJ/cm heat input and HAZ peak temperatures of $1150^{\circ}C$ and $1250^{\circ}C$. Microstructures of base steels and HAZ samples were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and their mechanical properties were evaluated by tensile tests. The addition of V and Nb formed fine V and/or Nb-rich carbides, and these carbides increased tensile and yield strength of base steels by grain refinement and precipitation hardening. During thermal cycle for HAZ simulation, the grain growth occurred and the ordered carbide (${\kappa}-carbide$) formed in the HAZs. The yield strength of HAZ samples (HAZ 1) simulated in $1150^{\circ}C$ peak temperature was higher as compared to the base steel due to the formation of ${\kappa}-carbide$, while the yield strength of the HAZ samples (HAZ 2) simulated in $1250^{\circ}C$ decreased as compared to HAZ 1 due to the excessive grain growth.