• Title/Summary/Keyword: Weld metal zone

Search Result 351, Processing Time 0.027 seconds

Optimization for Underwater Welding of Marine Steel Plates (선박용 강판의 수중 용접 최적화에 관한 연구)

  • 오세규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.1
    • /
    • pp.49-59
    • /
    • 1984
  • Optimizing investigation of characteristics of underwater welding by a gravity type arc welding process was experimentally carried out by using six types of domestic coated welding electrodes for welding of domestic marine structural steel plates (KR Grade A-1, SWS41A, SWS41B,) in order to develop the underwater welding techniques in practical use. Main results obtained are summarized as follows: 1. The absorption speed of the coating of domestic coated lime titania type welding-electrode became constant at about 60 minutes in water and it was about 0.18%/min during initial 8 minutes of absorption time. 2. Thus, the immediate welding electrode could be used in underwater welding for such a short time in comparison with the joint strength of in-atmosphere-and on-water-welding by dry-, wet-or immediate-welding-electrode. 3. By bead appearance and X-ray inspection, ilmenite, limetitania and high titanium oxide types of electrodes were found better for underwater-welding of 10 mm KR Grade A-1 steel plates, while proper welding angle, current and electrode diameter were 6$0^{\circ}C$, above 160A and 4mm respectively under 28cm/min of welding speed. 4. The weld metal tensile strength or proof stress of underwater-welded-joints has a quadratic relationship with the heat input, and the optimal heat input zone is about 13 to 15KJ/cm for 10mm SWS41A steel plates, resulting from consideration upon both joint efficiency of above-100% and recovery of impact strength and strain. Meanwhile, the optimal heat input zone resulting from tension-tension fatigue limit above the base metal's of SWS41A plates is 16 to 19KJ/cm. Reliability of all the empirical equations reveals 95% confidence level. 6. The microstructure of the underwater welds of SES41A welded in such a zone has no weld defects such as hydrogen brittleness with supreme high hardness, since the HAZ-bond boundary area adjacent to both surface and base metal has only Hv400 max with the microstructure of fine martensite, bainite, pearlite and small amount of ferrite.

  • PDF

Evaluation of Grooving Corrosion and Electrochemical Properties of H2S Containing Oil/Gas Transportation Pipes Manufactured by Electric Resistance Welding

  • Rahman, Maksudur;Murugan, Siva Prasad;Ji, Changwook;Cho, Yong Jin;Cheon, Joo-Yong;Park, Yeong-Do
    • Corrosion Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.109-115
    • /
    • 2018
  • Electrical Resistance Welding (ERW) on a longitudinal seam-welded pipe has been extensively used in oil and gas pipelines. It is well known that the weld zone commonly suffers from grooving corrosion in ERW pipes. In this paper, the grooving corrosion performances of API X65 grade non-sour service (steel-A) and API X70 grade sour gas resistant (steel-B) steel electrical resistance welding pipelines were evaluated. The microstructure of the bondline is composed of coarse polygonal ferrite grains and several elongated pearlites. The elongated pattern is mainly concentrated in the center of the welded area. The grooving corrosion test and electrochemical polarization test were conducted to study the corrosion behavior of the given materials. A V-shaped corrosion groove was found at the center of the fusion zone in both the steel-A and steel-B ERW pipes, as the corrosion rate of the bondlines is higher than that of the base metal. Furthermore, the higher volume fraction of pearlite at the bondline was responsible for the higher corrosion rate at the bondline of both types of steel.

The study on dynamic fracture toughness of friction-welded M.E.F. dual phase steel (복합조직강의 마찰용접부에 대한 동적파괴특성)

  • 오세욱;유재환;이경봉
    • Journal of Welding and Joining
    • /
    • v.7 no.3
    • /
    • pp.19-27
    • /
    • 1989
  • Both the SS41 steel and the M.E.F(martensite encapsulated islands of frrite) dual phase steel made of SS41 steel by heat treatment were welded by friction welding, and then manufactured machinemade Vnotch standard Charpy impact specimens and precracked with a fatigue system at BM(base metal), HAZ(heat affected zone) and WZ(weld interface Zone). The impact test of them was performed with an instrumented impact test machine at a number of temperatures in constant loading velocity and the dynamic fracture characteristics were studied on bases of the absorbed energy, dynamic fracture toughness and fractography from the test. The results obtained are as follows; At the room temperature, the absorbed energy is HAZ.geq.WZ.geq.BM in case of the M.E.F. dual phase steel: BM.geq.HAZ.geq.WZ in case of the SS41 steel, HAZ.geq.BM.geq.WZ at the low temperature. The absorbed energy is decreased markedly with the temperature lowering; it is highly dependent on the temperature. The dynamic fracture toughness of the M.E.F. dual phase steel is HAZ.geq.WZ.geq.BM at the room temperature; BM.geq.WZ.geq.HAZ below-60.deg. C. Therefore the reliability of friction welding is uncertain at the low temperature(below-60.deg. C). The dynamic fracture toughness of the SS41 steel; HZA.geq.WZ.geq.BM at overall temperature region. The flaw formed by rotational upsetting pressure was shown y SEM; in this region. The absorbed energy per unit area and dynamic fracture toughness were low relative to other region.

  • PDF

Effects of TiN and B on Grain Refinement of HAZ Microstructure and Improvement of Mechanical Properties of High-strength Structural Steel Under High Heat Input Welding (고강도 구조용 철강소재의 대입열 용접 시 열영향부의 조직 미세화 및 기계적 특성 향상에 미치는 TiN 및 B의 효과)

  • Park, Jin-seong;Hwang, Joong-Ki;Cho, Jae Young;Han, Il Wook;Lee, Man Jae;Kim, Sung Jin
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.97-105
    • /
    • 2019
  • In the current steel structures of high-rise buildings, high heat input welding techniques are used to improve productivity in the construction industry. Under the high heat input welding, however, the microstructures of the weld metal (WM) and heat-affected zone (HAZ) coarsen, resulting in the deterioration of impact toughness. This study focuses mainly on the effects of fine TiN precipitates dispersed in steel plates and B addition in welding materials on grain refinement of the HAZ microstructure under submerged arc welding (SAW) with a high heat input of 200 kJ/cm. The study reveals that, different from that in conventional steel, the ${\gamma}$ grain coarsening is notably retarded in the coarse grain HAZ (CGHAZ) of a newly developed steel with TiN precipitates below 70 nm in size even under the high heat input welding, and the refinement of HAZ microstructure is confirmed to have improved impact toughness. Furthermore, energy dispersive spectroscopy (EDS) and secondary-ion mass spectrometry (SIMS) analyses demonstrate that B is was identified at the interface of TiN in CGHAZ. It is likely that B atoms in the WM are diffused to CGHAZ and are segregated at the outer part of undissolved TiN, which contributes partly to a further grain refinement, and consequently, improved mechanical properties are achieved.

Mechanism of Crack Formation in Pulse Nd YAG Laser Spot Welding of Al Alloys (Al합금 펄스 Nd:YAG 레이저 점 용접부의 균열 발생기구)

  • Ha, Yong Su;Jo, Chang Hyeon;Gang, Jeong Yun;Kim, Jong Do;Park, Hwa Sun
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.213-213
    • /
    • 2000
  • This study was performed to investigate types and formation mechanism of cracks in two Al alloy welds, A5083 and A7NO1 spot-welded by pulse Nd: YAG laser, using SEM, EPMA and Micro-XRD. In the weld zone, three types of crack were observed: center line crack($C_{C}$), diagonal crack($C_{D}$), and U shape crack($C_{U}$). Also, HAZ crack($C_{H}$), was observed in the HAZ region, furthermore, mixing crack($C_{M}$), consisting of diagonal crack and HAZ crack was observed.White film was formed at the hot crack region in the fractured surface after it was immersed to 10%NaOH water. In the case of A5083 alloy, white films in C crack and $C_D crack region were composed of low melting phases, Fe₂Si$Al_8$ and eutectic phases, Mg₂Al₃ and Mg₂Si. Such films observed near HAZ crack were also consist of eutectic Mg₂Al₃. In the case of A7N01 alloy, eutectic phases of CuAl₂, $Mg_{32}$ (Al,Zn) ₃, MgZn₂, Al₂CuMg and Mg₂Si were observed in the whitely etched films near $C_{C}$ crack and $C_{D}$ crack regions. The formation of liquid films was due to the segregation of Mg, Si, Fe in the case of A5083 alloy and Zn, Mg, Cu, Si in the case of A7N01 aooly, respectively.The $C_{D}$ and $C_{C}$ cracks were regarded as a result of the occurrence of tensile strain during the welding process. The formation of $C_{M}$ crack is likely to be due to the presence of liquid film at the grain boundary near the fusion line in the base metal as well as in the weld fusion zone during solidification. The $C_{U}$ crack is considered a result of the collapsed keyhole through incomplete closure during rapid solidification. (Received October 7, 1999)

Study on The Status of Welded Parts According to The Types of Shielding Gas in TIG Welding (TIG용접에서 실드가스 종류의 변화에 따른 용접부의 변화상태 고찰)

  • Kim, Jin-Su;Kim, Bub-Hun;Lee, Chil-Soon;Kim, Yohng-jo;Park, Yong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.38-43
    • /
    • 2015
  • Tungsten inert gas (TIG) welding is commonly used in industries that require airtightness, watertightness, oiltightness, and precision. It is a non-consumable welding method that is commonly used for the welding of non-ferrous metals, but it can be used to weld most metals. The methods of TIG welding can be divided into three types. The first, manual welding is done directly on the metal by a welder with a torch. The second, semi-automatic welding, gets help from a material supplying machine, but it is conducted by a welder. Lastly, automated welding is conducted fully by a machine during its process and operation. Depending on the selection of electrode, the amount of heat that is applied to the base material and the electrode rod changes and makes the shape of welded parts different. A direct-current positive electrode was used for this study. Through the change of shielding gas type on a structural steel (SS-400) that is commonly used in industry, the composition and shape changes in welded parts were detected after welding. The heat-affected area, hardness value, and tensile strength were also identified through hardness testing and tensile testing. In this study, it was found that the higher hardness value of the heat-affected is, the weaker the tensile strength becomes.

Directivity Analysis of Ultrasonic Wave Reflected from the Artificial Defect in Simulated Butt Welded Joint (가상 용접부내의 결함으로부터 반사된 초음파의 지향성 해석)

  • Nam, Young-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.2
    • /
    • pp.378-385
    • /
    • 1995
  • The ultrasonic non-destructive testing uses the directivity of the ultrasonic pulse wave which propagates in one direction. The directivity is expressed as the relationship between the propagate direction and its sound pressure. The directivity of ultrasonic wave is closely related to determination of probe arrangement, testing sensitivity, scanning pitch and defect location and characterization. The paper measured the directivity of shear wave, which reflected from artificial defect located in weld metal zone in butt welded joint similar model made of pyrex glass by using visualization method. 2 MHz and 4 MHz angle probes were used to measure the directivity of reflection wave at the artificial defect. The directivity of shear waves reflected from the defect was different according to the probe position and the shape of butt welded joint. The difference of directivity of reflection wave was existed between 2 MHz and 4 MHz angle probes. The angle of reflection wave became equal to angle of incidence as increase of the height of excess metal.

  • PDF

An Evaluation of the Fracture Behavior for Flash Butt Welding zone by Acoustic Emission Method (AE방법에 의한 Flash Butt 용접부의 파괴거동 평가)

  • 김용수;이하성;강동명
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.9-18
    • /
    • 1994
  • In this study, we conducted experimental tests to evaluate fracture behaviors of fresh-butt welded metal by Acoustic Emission technique. We selected similar welding and dissimilar welding process, the one welded for SM45C, SS41 and SUS304 of each material, the other for SM45C and SS41, SM45C and SUS304 and SS41 and SUS304. The fracturing processes of weld metal were estimatied through the fracture toughness test with compact tension specimens and fractography analysis. In ASTM test method E-399, type I curves for materials of this study were obtained by load-cod diagram of fracture toughness test. and 5% offset load( $P_{5}$) was estimated as the estimated crack initial load( $P_{Q}$), The estimated crack initial load( $P_{Q}$) of similar welding materials generally lower than base matal, and then SM45C appeared greatly in decreasing rate of PB, SS41 and SUS304 appeared in order. $P_{Q}$ of dissimilar welding materials were lower than the similar welding materials. $P_{Q}$ of welding of SM45C and SS41 appeared in small, SUS304 and SS41 appeared greatly in dissimilar welding materials. In fracture toughness test, AE counts increased before the inflection point of the slope, decreased after that. It was found that increasing of AE counts were due to the microcrack formation at the crack tip near the $P_{5}$ point through AE data. For welding materials in this study, both low and high AE amplitude appeared simulataneously. It was confirmed that the low AE amplotude was due to formation of micro void, micro crack or micro dimple, the high AE amplitude was caused by microvoid coalescence and quasi-cleavage fracture through analyses of fractograpy.apy.apy.apy.

  • PDF

Effects of temperature on the local fracture toughness behavior of Chinese SA508-III welded joint

  • Li, Xiangqing;Ding, Zhenyu;Liu, Chang;Bao, Shiyi;Qian, Hao;Xie, Yongcheng;Gao, Zengliang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1732-1741
    • /
    • 2020
  • The structural integrity of welded joints in the reactor pressure vessel (RPV) is directly related to the safety of nuclear power plants. The RPV is made from SA508-III steel in a pressurized water reactor. In this study, we investigated the effects of temperature on the tensile and fracture toughness properties of Chinese SA508-III welded joint in different sampling areas in order to provide reference data for structural integrity assessments of RPVs. The specimens used in tensile and fracture toughness tests were fabricated from the base metal (BM), weld metal (WM), and the heat-affected zone (HAZ) in the welded joint. The representative testing temperatures included the ambient temperature (20 ℃), upper shelf temperature (100 ℃), and service temperature (320 ℃). The results showed that temperature greatly affected the fracture toughness (JIC) values for the SA508-III welded joint. The JIC values for BM and HAZ both decreased remarkably from 20 ℃ to 320 ℃. The fracture morphologies showed that the BM and HAZ in the welded joint exhibited fully ductile fracture at 20 ℃, whereas partial cleavage fracture was mixed in ductile fracture mode at 100 ℃ and 320 ℃. The WM exhibited the ductile and cleavage fracture mixed mode at various temperatures, and the JIC values showed slight changes.

Experimental Investigation of Fatigue Crack Growth Behavior in Friction Stir Welded 7075-T651 Aluminum Alloy Joints under Constant Stress Intensity Factor Range Control Testing (For LT Orientation Specimen) (일정 응력확대계수범위 제어 시험하의 마찰교반용접된 7075-T651 알루미늄 합금 용접부의 피로균열전파 거동의 실험적 고찰 (LT 방향의 시험편에 대하여))

  • Jeong, Yeui Han;Kim, Seon Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.775-782
    • /
    • 2013
  • In this study, as a series of studies aimed at investigating the spatial randomness of fatigue crack growth for friction stir welded (FSWed) 7075-T651 aluminum alloy joints, the fatigue crack growth behavior of FSWed 7075-T651 aluminum alloy joints was investigated for LT orientation specimens. Fatigue crack growth tests were conducted under constant stress intensity factor range (SIFR) control for 5 specimens of the FSWed 7075-T651 aluminum alloy, including base metal (BM), heat affected zone (HAZ), and weld metal (WM) specimens. The mean fatigue crack growth rate of WM specimens was found to be the highest, whereas that of HAZ and WM specimens was the lowest. Furthermore, the variability of fatigue crack growth rate was found to be the highest in WM specimens and lowest in BM specimens.