• Title/Summary/Keyword: Weld metal toughness

Search Result 135, Processing Time 0.025 seconds

Fatigue Creak Growth Properties of Welded Joint for the Railway Bridge Steel (철도교량(鐵道橋梁)의 용접부(鎔接部)에서 피로(疲勞)균열의 성장특성(成長特性))

  • Chang, Dong Il;Yong, Hwan Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.125-136
    • /
    • 1984
  • In the weled structures, fatigue fracture mainly depends upon crack growth behavior. Specially anisotropy of crack growth orientation and welding direction become important factor of fracture in the welding jone. When fatigue stressed steel welded with nonfatigue stressed steel, at the low stress intensity factor range, residual stress become more important factor of growth behavior then properties of base metal but when the crack growth in the weld metal, toughness of weld metal become the most important factor. Especially nonhomgeniety of toughness for the weld metal make more scatter the relations of $da/dN-{\Delta}K$.

  • PDF

EFFECT OF IN-SITU VIBRATION ON THE PROPERTIES OF A-GRADE STEEL SMA WELDMENT

  • Park, Tae-Dong;Kim, Ha-Geun;Youn, Joong-Geun
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.408-411
    • /
    • 2002
  • Effect of in-situ vibration on the properties of A-grade steel SMA weldment has been investigated. Welding was performed on the steel fixed at the experimental jig under the mechanical vibration of a given frequency. The applied frequency varied from 39 to 43.5 Hz (harmonic frequency). For weldments formed under the vibration with a sub-harmonic frequency, both the columnar width of the weld metal and the prior austenite grain size of the HAZ near the fusion line clearly decreased. This indicates that the vibration increase the cooling rate after welding. Vibration effect was also found at the weld metal formed at the center region of the weldment. The weld metal showed liner microstructure both in columnar zone and in equiaxed zone with thinner grain boundary ferrite. However mechanical properties of the weld metal did not exactly follow the microstructural changes developed under the vibration. The weld metal formed under the vibration revealed higher yield and tensile strength but lower ductility and impact toughness, compared with the conventional weld metal.

  • PDF

Fracture Toughness Evaluation of Natural Gas Pipeline under the Cathodic Protection

  • Kim, Cheol-Man;Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik
    • Corrosion Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.133-138
    • /
    • 2009
  • For the corrosion protection of the natural gas transmission pipelines, two methods are used, cathodic protection and coating technique. In the case of cathodic protection, defects are embrittled by occurring hydrogen at the crack tip or material surface. It is however very important to evaluate whether cracks in the embrittled area can grow or not, especially in weld metal. In this work, on the basis of elastic plastic fracture mechanics, we performed the CTOD testing with various test conditions, such as testing rate and potential. The CTOD of the base metal and the weld metal showed a strong dependence of the test conditions. The CTOD decreased with decreasing testing rate and with increasing cathodic potential. The morphology of the fracture surface showed the quasi-cleavage at low testing rate and cathodic overprotection. The low CTOD was caused by hydrogen embrittlement at crack tip.

Cryogenic Fracture Toughness Evaluation for Austenitic Stainless Steels by Means of Unloading Compliance Method

  • Yu, Hyo-Sun;Kwon, Il-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.26-34
    • /
    • 2001
  • Most research to date concerning the cryogenic toughness of austenitic stainless steels has concentrated on the base metal and weld metal in weldments. The most severe problem faced on the conventional austenitic stainless steel is the thermal aging degradation such as sensitization and carbide induced embrittlement. In this paper, we investigate the cryogenic toughness degradation which can be occurred for austenitic stainless in welding. The test materials are austenitic stainless JN1, JJ1 and JK2 steels, which are materials recently developed for use in nuclear fusion apparatus at cryogenic temperature. The small punch(SP) test was conducted to detect similar isothermally aging condition with material degradation occurred in service welding. The single-specimen unloading compliance method was used to determine toughness degradation caused by thermal aging for austenitic stainless steels. In addition, we have investigated size effect on fracture toughness by using 20% side-grooved 0.5TCT specimens.

  • PDF

Microstructural Characteristics of 800 MPa Grade High Strength Steel Weld Metals (800 MPa급 고강도강 용접금속의 미세조직 특성 비교 연구)

  • Lee, Jae-Hee;Kim, Sang-Hoon;Yoon, Byung-Hyun;Kim, Hwan-Tae;Kil, Sang-Cheol;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.65-73
    • /
    • 2011
  • Microstructural characteristics of two high strength (600 MPa & 800 MPa) weld metals produced by flux-cored arc welding process (FCAW) were evaluated. The 600 MPa grade weld metal was consisted of 75% acicular ferrite and 25% ferrite which was formed at relatively high temperature (grain boundary ferrite, widmanstatten ferrite, polygonal ferrite). However, the 800 MPa grade weld metal was composed of about 85% acicular ferrite and 15% low temperature forming phases (bainite, martensite). The prior austenite grain size of 800 MPa grade weld metal was decreased by solute drag force. The compositions and sizes of inclusions which are the dominant factors for the formation of acicular ferrite were analyzed by a transmission electron microscopy (TEM). In both 600 MPa and 800MPa grade weld metals, the inclusions were mainly consisted of Ti-oxide and Mn-oxide, and the average size of inclusions was $0.7{\mu}m$. The 800 MPa grade weld metal exhibited higher tensile strength and similar toughness compared with the 600 MPa grade weld metal. This result is mainly due to a higher fraction of low temperature products and a lower fraction of grain boundary ferrite in the 800 MPa grade weld metal.

The Effects of cathodic protection on fracture toughness of buried gas pipeline (매설가스배관의 음극방식이 배관의 파괴인성에 미치는 영향)

  • Kim, Cheol-Man;Kim, Woo-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.573-578
    • /
    • 2001
  • For the corrosion protect ion of the natural gas transmission pipelines, two methods are used, cathodic protection and coating technique. In the case of cathodic protection, defects are embrittled by occurring hydrogen at the crack tip or material surface. It is however very important to evaluate whether cracks in the embrittled area can grow or not, especially in weld metal. In this work, on the basis of elastic plastic fracture mechanics, we performed CTOD test ing with varying test conditions, such as the potential and current density. The CTOD of the base steel and weld metal showed a strong dependence of the test conditions. The CTOD decreased with increasing cathodic potential and current density. The morphology of the fracture surface showed quasi-cleavage. Hydrogen introduced fractures, caused by cathodic overprotection.

  • PDF

Evaluation of Mechanical Properties of Alloy 82/182 Weld Joint Between SA508 Gr.3 Nozzle and F316L Safe-End (SA508 Gr.3 노즐과 F316L 안전단 사이의 Alloy 82/182 용접부에 대한 기계적물성치 평가)

  • Kim, Jin-Weon;Lee, Kyung-Soo;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.333-340
    • /
    • 2010
  • This paper presents the distributions of the tensile and fracture properties of an alloy 82/182 dissimilar weld joint between an SA508 Gr.3 nozzle and F316L SS safe-end at ambient temperature. Tensile and J-R tests were conducted using specimens extracted from base metals, heat-affected zones (HAZs), buttering regions, and various regions of the weld metal. The results show that the root region of the weld has higher strength than the upper region. The yield and tensile strengths vary considerably within the root region of the weld. The buttering region had the lowest strengths. The strengths gradually increased as the F316L stainless steel weld boundary was approached. The variation of the strengths within the upper region of the weld is insignificant. The fracture toughness of the alloy 82/182 weld metal is less than those of both the base metals and both HAZs. Within the alloy 82/182 weld, the center of weld has a slightly lower fracture toughness than the weld boundary and buttering region, and the root region has greater toughness than the upper region of the weld.