• Title/Summary/Keyword: Weld metal toughness

Search Result 135, Processing Time 0.027 seconds

The Effect of Heat Input on Fracture Toughness(CTOD) in Submerged Arc Offshore Steel Weldments (해양구조용강재의 SA용접부에서 입열량이 파괴인성에 미치는 영향에 관한 실험적 연구)

  • Kang, Sung-Won;Kim, Myung-Hyun;Shin, Yong-Taek;Lee, Hae-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.40-47
    • /
    • 2004
  • The influence of heat input on fracture toughness was investigated in SAW weldments, which were prepared at two different welding conditions in API 2W Gr.50 and EN10225 5420. By examining the fracture initiation point, refined areas(ICHAZ and SCHAZ) in weld metal was identified as local brittle zone, in which M-A constituents and coarsed grain size were observed. Impact values showed the most significant difference at root portion, and CTOD transition temperature was related with impact values obtained at root portion. Hardness values in refined area were less than columnar microstructure about 20 HV5.

The study on dynamic fracture toughness of friction-welded M.E.F. dual phase steel (복합조직강의 마찰용접부에 대한 동적파괴특성)

  • 오세욱;유재환;이경봉
    • Journal of Welding and Joining
    • /
    • v.7 no.3
    • /
    • pp.19-27
    • /
    • 1989
  • Both the SS41 steel and the M.E.F(martensite encapsulated islands of frrite) dual phase steel made of SS41 steel by heat treatment were welded by friction welding, and then manufactured machinemade Vnotch standard Charpy impact specimens and precracked with a fatigue system at BM(base metal), HAZ(heat affected zone) and WZ(weld interface Zone). The impact test of them was performed with an instrumented impact test machine at a number of temperatures in constant loading velocity and the dynamic fracture characteristics were studied on bases of the absorbed energy, dynamic fracture toughness and fractography from the test. The results obtained are as follows; At the room temperature, the absorbed energy is HAZ.geq.WZ.geq.BM in case of the M.E.F. dual phase steel: BM.geq.HAZ.geq.WZ in case of the SS41 steel, HAZ.geq.BM.geq.WZ at the low temperature. The absorbed energy is decreased markedly with the temperature lowering; it is highly dependent on the temperature. The dynamic fracture toughness of the M.E.F. dual phase steel is HAZ.geq.WZ.geq.BM at the room temperature; BM.geq.WZ.geq.HAZ below-60.deg. C. Therefore the reliability of friction welding is uncertain at the low temperature(below-60.deg. C). The dynamic fracture toughness of the SS41 steel; HZA.geq.WZ.geq.BM at overall temperature region. The flaw formed by rotational upsetting pressure was shown y SEM; in this region. The absorbed energy per unit area and dynamic fracture toughness were low relative to other region.

  • PDF

Behavior of Fracture Deviation in the Impact Test of Narrow Laser Welds (충격 시험시 발생하는 레이저 용접부의 파괴 이탈 현상)

  • Na, Il;Kim, Jae-Do
    • Proceedings of the KWS Conference
    • /
    • 1993.05a
    • /
    • pp.120-124
    • /
    • 1993
  • The Charpy V impact test on subsize was performed on narrow laser welds of low carbon steel sheets, joined by using a continuous wave 3kW CO$_2$ laser. Under certain conditions, a bimodal fracture behaviour has been experienced in Charpy V impact test of narrow laser beam welds. Deviation of the fracture path from the fusion zone into the base metal was dominated at high test temperature. It can be seen that the deviation always occurred after ductile initiation. If the deviation occurs on a small testing specimen, the same trend would happen on the actual laser welded structure. Fracture will then propagate through the base material even if the weld metal has low toughness.

  • PDF

The characteristics of Near-thrshold fatigue crack propagation for welding zone in TMCP high strength steels (TMCP 고장력강 용접부의 하한계 피로균열진전 특성평가)

  • 이택순;오대석;이휘원
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.39-47
    • /
    • 1997
  • Recently developed TMCP steels, which were manufactured by controlled rolling followed by accelerated cooling process, were examined to study their characteristics and weldability. Accelerated cooling type TMCP steel's hardness test result exhibited high value on weld zone. On the contrary, base metal and HAZ exhibited comparatively the similar value. On this experiment result Softening of HAZ is not occurred. in the-heat affected zone, grain size repression be caused by chemical composition properties which a small quantity Al-Ti-B-N. Changing stress ratio near-threshold fatigue crack propagation experiments were carried out. According to this result, crack propagation velocity of the HAZ exhibited slower than the base metal and near-threshold value had increased at the HAZ. Finally accelerated cooling type TMCP steels were exhibited excellent mechanical properties in both strength and toughness.

  • PDF

An Evaluation of the Fracture Behavior for Flash Butt Welding zone by Acoustic Emission Method (AE방법에 의한 Flash Butt 용접부의 파괴거동 평가)

  • 김용수;이하성;강동명
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.9-18
    • /
    • 1994
  • In this study, we conducted experimental tests to evaluate fracture behaviors of fresh-butt welded metal by Acoustic Emission technique. We selected similar welding and dissimilar welding process, the one welded for SM45C, SS41 and SUS304 of each material, the other for SM45C and SS41, SM45C and SUS304 and SS41 and SUS304. The fracturing processes of weld metal were estimatied through the fracture toughness test with compact tension specimens and fractography analysis. In ASTM test method E-399, type I curves for materials of this study were obtained by load-cod diagram of fracture toughness test. and 5% offset load( $P_{5}$) was estimated as the estimated crack initial load( $P_{Q}$), The estimated crack initial load( $P_{Q}$) of similar welding materials generally lower than base matal, and then SM45C appeared greatly in decreasing rate of PB, SS41 and SUS304 appeared in order. $P_{Q}$ of dissimilar welding materials were lower than the similar welding materials. $P_{Q}$ of welding of SM45C and SS41 appeared in small, SUS304 and SS41 appeared greatly in dissimilar welding materials. In fracture toughness test, AE counts increased before the inflection point of the slope, decreased after that. It was found that increasing of AE counts were due to the microcrack formation at the crack tip near the $P_{5}$ point through AE data. For welding materials in this study, both low and high AE amplitude appeared simulataneously. It was confirmed that the low AE amplotude was due to formation of micro void, micro crack or micro dimple, the high AE amplitude was caused by microvoid coalescence and quasi-cleavage fracture through analyses of fractograpy.apy.apy.apy.

  • PDF

Evaluation of Fracture Toughness in Steel Weldment for Inner Wall of LNG Storage Tank (LNG 저장탱크 내조용 강 용접부의 파괴인성 평가)

  • Jang J.-i.;Ju J.-B.;Yang Y.-c.;Kim W.-s.;Hong S. H.;Kwon D.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.7-13
    • /
    • 1998
  • In this study, for the safety performance of LNG storage tank, the fracture toughness in X-grooved weld HAZ(heat-affected zone) of $9\%$ Ni steel was evaluated qualitatively and quantitatively, and the relation with the change in microstructure was analyzed. The toughness assessment was peformed through the modified CTOD test proposed for thick weldment with X-groove. Additionally, microstructures of HAZ were evaluated by OM, SEM and XRD. From the results, HAZ toughness of SMA(shielded metal arc)-welded $9\%$ Ni steel decreased as the evaluated region approached the fusion line. The decrease in toughness was apparently caused by the increase in the fraction of coarse-grained zone within HAZ. On the other hand, toughness drop with decreasing test temperature in F.L.(fusion line) ${\~}$F.L.+3mm was larger than that in F.L.+5mm${\~}$F.L.+7mm region due to the fact that in the former regions, retained austenite had poor stability.

  • PDF

A Study of Characteristics on the Dissimilar Metals (ASTM Type 316L - Carbon Steel : ASTM A516-70) Welds Made with FCA Multiple Layer Welding (스테인리스강(ASTM Type 316L)과 탄소강(ASTM A516 Gr.70) 이종금속의 FCA 다층 용접부 특성에 대한 연구)

  • Kim, Se Cheol;Hyun, Jun Hyeok;Shin, Tae Woo;Koh, Jin Hyun
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.69-76
    • /
    • 2016
  • Characteristics of dissimilar metal welds between ASTM Type 316L and carbon steel ASTM A516 Gr.70 made with FCAW were evaluated in terms of microstructure, ferrite content, EDS analysis, hardness, tensile strength, impact toughness and corrosion resistance. Three heat inputs of 10.4, 16.9, 23.4kJ/cm were employed to make joints of dissimilar metals with E309LMoT1-1 wire. Microstructure of dissimilar weld metals consisted of mostly vermicular type of ${\delta}$-ferrite and some lathy type of ${\delta}$-ferrite, and ${\delta}$-ferrite was transformed into globular type in reheated zone. In all conditions, weld metals were solidified on FA solidification mode. Based on the EDS analysis of weld metals, All Creq/Nieq values were in the range of FA solidification mode, and it was decreased with increasing heat inputs whereas it was increased with increasing layers. The amount of ${\delta}$-ferrite was decreased with increasing heat input due to the difference of cooling rate, and it was increased with increasing layers. Accordingly, hardness and tensile strength of dissimilar metals weld joints was decreased with increasing heat input while impact energy was increased with increasing heat input. Corrosion test of dissimilar metals weld joints showed that weight gain rate of heat input 10.4kJ/cm was the greatest, and that of three heat inputs became constant after certain time.

Irradiation Behavior of Reactor Pressure Vessel SA508 class 3 Steel Weld Metals (압력용기강재 SA508 class 3 용착금속의 조사거동)

  • Koh, Jin-Hyun;Park, Hyoung-Keun;Kim, Soo-Sung;Hwang, Yong-Hwa;Seo, Yun-Seok
    • Journal of Welding and Joining
    • /
    • v.28 no.5
    • /
    • pp.69-74
    • /
    • 2010
  • Irradiation behavior of the reactor pressure vessel SA508 class 3 steel weld metals was examined by Charpy V Notch impact specimens. The specimens were exposed to a fluence of $2.8{\times}1019$ neutrons(n)/$cm^2$(E>1 MeV) at $288^{\circ}C$. The irradiation damage of weld metal was evaluated by comparison between unirradiated and irradiated specimens in terms of absorbed energy and lateral expansion. The specimens for neutron irradiation were welded by submerged arc welding process at a heat input of 3.2 kJ/mm which showed good toughness in terms of weld microstructure, absorbed energy and lateral expansion. The post-irradiation Charpy V notch 41J and 68J transition temperature elevation were $65^{\circ}C$ and $70^{\circ}C$, respectively. This elevation was accompanied by a 20% reduction in Charpy V notch upper shelf energy level. The lateral expansion at 0.9mm irradiated Charpy specimens showed temperature elevation of $65^{\circ}C$ and was greatly decreased due to radiation damage.

The Fatigue Behavior of Laser Welded Sheet Metal (레이저 용접 판재의 피로거동)

  • 오택열
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.339-344
    • /
    • 1999
  • For the Tailor Welded Blank sheet used for automobile body panel, the characteristics of fatigue strength and crack propagation behavior were studied. The thickness of specimen was machined to be same (0.9mm+0.9mm) and different (0.9mm+2.0mm). As a base test, mechanical properties around welding zone were examined. The results indicated that there were no significant decreases in mechanical properties, but hardness around welding bead is 2.3 times greater than base material. The fatigue strength was the highest when the loading direction was parallel to the welding direction, which was about 85% of tensile strength of base material. It was decreased by 8.5% when the thickness of specimen and base material was different, and it is increased by 25% when pre-strain was applied. The crack propagation rate was noticeable decreased around welding line and rapidly increased as it passed by welding line. Reviewing the shape of the crack propagation, crack width around welding line was wide around the welding zone due to retardation of crack growth, but it became narrow passing welding line due to decreased toughness.

  • PDF

Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel (Ni-Cr-Mo계 고강도 저합금강 용접클래드 계면의 미세조직 특성 평가)

  • Kim, Hong-Eun;Lee, Ki-Hyoung;Kim, Min-Chul;Lee, Ho-Jin;Kim, Keong-Ho;Lee, Chang-Hee
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.628-634
    • /
    • 2011
  • SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at $610^{\circ}C$ for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.