• Title/Summary/Keyword: Weld deformation

Search Result 213, Processing Time 0.024 seconds

A study on welding structure and thermal behavior in friction welding of austenitic stainless steel (오스테나이트계 스테인레스강의 마찰압접시 압접조직과 열적거동에 관한 연구)

  • 강춘식;정태용
    • Journal of Welding and Joining
    • /
    • v.8 no.1
    • /
    • pp.43-53
    • /
    • 1990
  • The transient temperature distribution in the continuous friction welding 304 stainless steel bars is investigated by experimental and analytical methods. It is calculated by F.D.M. (finite difference method). The heating pressure, the rotational speed and friction coefficient obtained from experiment are used to determine the heat input at the contacting surface. Thermal properties of the workpiece are the function of temperature. The calculated temperature is well coincided with the measured value. The grain size at weld interface is extremely small due to the severe plastic deformation at high temperature, and result of this refined zone reveals higher hardness value. Because the HAZ is very narror about 2-3 mm, welding defects do not occure.

  • PDF

Residual stress analysis of thick plate pipe (후판 파이프 제작시 잔류응력)

  • Choe Gwang;Im Seong U
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.150-152
    • /
    • 2004
  • This study was aimed at evaluation of residual stress of steel pipe structures. The production process of pipes was complex (at first bending was done by roll forming or press forming and welding was final process of making of steel pipes). So there could be effected high residual stresses in steel pipes. In order to evaluate the changes of residual stress the locations of measurement were selected carefully. Measurements of residual stress were done for various kinds of pipes (shapes in circular and square). For the evaluation of residual stress, hole-drilling method (ASTM E837 was applied. The results showed that along the weld Eine high tensile stress were measured as effected, and high tensile stresses were measured where large plastic deformation developed. Through these efforts, experimental results could be more effectively assisted by numerical method.

  • PDF

IRRADIATION EMBRITTLEMENT OF CLADDING AND HAZ OF RPV STEEL

  • Lee J.S.;Kim I.S.;Jang C.H.;Kimura A.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.405-410
    • /
    • 2006
  • Microstructural features and their related mechanical property changes in the 309L cladding and the heat affected zone (HAZ) of SA508 cl.3 steel were investigated through the use of TEM, tensile and small punch (SP) tests. The specimens were irradiated at 563 K up to the neutron fluences of $5.79{\times}10^{19}n/cm^2$ (>1MeV). The microstructure of the clad was mainly composed of a fcc ${\gamma}-phase$, a low percentage of bcc ${\delta}-ferrite$, and a brittle ${\sigma}-phase$. Along the weld fusion line there formed a heavy carbide precipitation with a width of $20{\sim}40{\mu}m$, showing preferential cracking during plastic deformation. The yield stress and ductile-to-brittle transition temperature (DBTT) of the irradiated clads increased. The origin of the hardening and the shift of the DBTT are discussed in terms of the irradiation-produced defect clusters of a fine size and brittle ${\sigma}-phase$.

A Study on the Weld-Induced Deformation and Residual Stress Analysis at FPSO Moon Pool Structure (FPSO Moon Pool 구조의 용접변형과 잔류응력에 관한 연구)

  • Han, Sung-Woo;Lee, Joo-Sung;Kim, Sang-Il
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.5
    • /
    • pp.473-478
    • /
    • 2011
  • Welding process generates distortion and residual stress in the weldment due to rapid heating and cooling. Welding distortion and residual stress in the welded structure result in many troubles such as dimensional inaccuracies in assembling and safety problem during service. The accurate prediction of welding residual stress is thus very important to improve the quality of weldment and find the way to reduce itself. This paper presents the simulation of welding-induced residual stress analysis to examine the cause of cracking in the SUS-overlay welding specimen at FPSO Moon Pool structure.

Application of Acoustic Emission to Weld Evaluation (용접부 검사법으로서의 Acoustic Emission)

  • 정희돈;권영각;장래웅
    • Journal of Welding and Joining
    • /
    • v.11 no.2
    • /
    • pp.1-12
    • /
    • 1993
  • 용접과 관련되는 분야에서, 재료평가와 비파괴 검사법으로서의 Acoustic Emission의 응용을 살펴 보았다. 재료 평가법으로서의 AE는 다른 시험방법들이 검출해 내지 못하는 재료 내부에서의 미시적인 현상들을 정량적으로 평가할 수 있는 장점을 가지고 있다. 앞으로 새로운 용접재료의 개발이라든지, 고도의 신뢰성이 요구되는 용접부위의 정량적인 평가를 위해서 AE의 응용은 중요한 정보들을 제공하게 될 것이다. 한편 용접구조물의 비파괴적 평가법으로서의 AE는 균열의 동적인 거동 및 균열의 위치를 검지할 수 있다는 장점 때문에 응용범위는 더욱 넓어질 것이다. 여기서 유의하여야 할 점은, 목적으로 하는 AE신호를 수만배 까지 증폭시키는 과정에서 환경잡음의 영향을 무시할 수 없는 경우에는 우선적으로 잡음을 적극적으로 제거하는 고도의 연구도 함께 병행되어야 한다는 것이다.

  • PDF

The Effect of Heat Input on Grooving Corrosion Behavior in the Welds of Electric Resistance Welding Steel Pipe (ERW 강관 용접부의 홈부식거동에 미치는 입열량의 영향)

  • Lee, B.W.;Lee, J.S.;Park, H.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.41-46
    • /
    • 2007
  • The microstructure and electrochemical analysis of welds of electric resistance welding(ERW) pipe were investigated. The direction of metal flow line in HAZ of ERW pipe shifted to the inner(or outer) surface of pipe by plastic deformation during welding. The lowest heat input welds of ERW pipe was showed crack by liquid penetrant testing. Accelerated corrosion test by constant current density of 20mA/$cm^{2}$ developed groove at the welds of ERW pipe and the measured grooving factors were about $1.2{\sim}1.5$. Corrosion potential of base metal obtained by cyclic polarization in artificial sea water(3.5wt.% NaCl solution) was 100mV higher than that of weld metal of ERW pipe.

  • PDF

A Study on the Prediction and Control of Angular Distortion in Thick Weldments (후판 구조의 각변형 예측 및 제어에 관한 연구)

  • 허주호;김상일
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.518-524
    • /
    • 2003
  • The block assembly of ship consists of a series of heat processes such as cutting, bending, welding, residual stress relaxation and fairing. With the fast development of computers, the thermal elasto-plastic analysis method has become a versatile tool for practical applications in the ship production. If numerical analysis is proved to be an advantageous tool to predict the residual deformation due to various heat processes, the optimum methods which can remove the welding distortion can be presented at each assembly stage, which will result in great progress in improving the accuracy of block assembly. In order to minimize the weld-induced angular distortion in thick weldments, this paper proposes the optimum groove design for various plate thickness as the distortion control method. The validity of this method has been substantiated by a number of numerical simulations and experiments.

A Study on the Prediction and Control of Angular Distortion in Thick Weldments (후판 구조의 각변형 예측 및 제어에 관한 연구)

  • Kim, Sang-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.100-105
    • /
    • 2008
  • The block assembly of ship consists of a series of heat processes such as cutting, bending, welding residual stress relaxation and fairing With the fast development of computers, the thermal elasto-plastic analysis method has become a versatile tool for practical applications in the ship production. If numerical analysis is proved to be an advantageous tool to predict the residual deformation due to various heat processes, the optimum methods which can remove the welding distortion can be presented at each assembly stage, which will result in great progress in improving the accuracy of block assembly. In order to minimize the weld-induced angular distortion in thick weldments, this paper proposes the optimum groove design for various plate thickness as the distortion control method. The validity of this method has been substantiated by a number of numerical simulations and experiments.

A study on curvature radius affects condition of injection molding (사출성형조건이 곡율반경에 미치는 영향에 관한 연구)

  • Shin, Nam-Ho;Choi, Suk-Jong;Lee, Eun-Jong
    • Design & Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.21-26
    • /
    • 2008
  • In this research, jar die of cosmetic products which is difficult to produce variously was developed and can be obtain the productivity improvement by flexibility with two system which can control the die temperature. Flow analysis of jar was performed to find out the curvature radius of parts. In order to reduce thickness of jar, cycle time, deformation, uniform curvature of internal jar was maintained by rapid cooling. In external of dies, cooling channel, injection molding condition, die temperature control system were researched to make dies low temperature.

  • PDF

The 3-layer laser welding method of zinc coated steel for car body (자동차 차체용 아연도금강판의 3겹 레이저용접 방법)

  • Lee, Hui-Beom;Jang, In-Seong;Jeong, Dae-Hyeon;O, Gwang-Min;Sim, Min-Seon
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2006.06a
    • /
    • pp.35-40
    • /
    • 2006
  • Laser welding is high power density welding method which is higher speed and productivity, lower thermal deformation, without material restrictions for car body welding. But, in case of zinc coated sheet metal welding, the gap is needed $0.1{\sim}0.2mm$ to avoid weld bead blowup. This paper describe that it used dimple and pressure roller tool to improve laser welding quality for 3-layer zinc coated sheet metal.

  • PDF