• 제목/요약/키워드: Weld Time

검색결과 497건 처리시간 0.025초

Ni-Cr-Mo과 SM45C의 마찰용접특성(摩擦熔接特性)에 관한 연구(硏究) (A Study on the Properties in Friction Weldability of Ni-Cr-Mo and SM45C)

  • 임형택;민택기
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.29-36
    • /
    • 2007
  • The present study examined the mechanical properties of the friction welding of Ni-Cr-Mo to SM45C. Friction welding was conducted at welding conditions of 2,000 rpm, friction pressure of 100MPa, friction time of 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 seconds, upset pressure of 150MPa, and upset time of 3.0 seconds. When the friction time was 1.6 seconds, the maximum tensile strength of the friction weld happened to be 1,020MPa, which is 120% of the base material's tensile strength(850MPa). At the same condition, the maximum shear strength was 438MPa, which is equivalent to 103% of the base material's shear strength(425MPa). At the same condition, the maximum vickers hardness was Hv490 at Ni-Cr-Mo nearby weld interface, which is higher Hv40 than condition of the friction time 0.8 seconds, and the maximum vickers hardness was Hv305 from weld interface of SM45C, which is higher Hv12 than condition of the friction time 0.8 seconds. The results of microstructure analysis show that the structures of two base materials have fined and rearranged along a column due to heating and axial force during friction, which has affected in raising hardness and tensile strength.

SKH51/SM45C의 마찰용접특성에 관한 연구 (A Study on Mechanical Properties and Friction Weldability of SKH51 and SM45C)

  • 이세경;민병훈;최수현;심도기;민택기
    • Journal of Welding and Joining
    • /
    • 제25권6호
    • /
    • pp.53-58
    • /
    • 2007
  • The present study examined the mechanical properties of the friction welding of shaft made of SKH51 and SM45C, of which the diameter is 12mm. Friction welding was done at welding conditions of 2,000rpm, friction pressure of 104MPa, upset pressure of 134MPa, friction time of 0.5sec to 2.5sec by increasing 0.5sec, upset time of 2 seconds. Under these conditions, a tensile test, a bending test, a shear test, a hardness test and a microstructure of weld interface were studied. When the friction time was 1.0 second under the conditions, the maximum tensile strength of the friction weld observed to be 963MPa, which is 89% the tensile strength of SKH51 base metal and 101% of the tensile strength of SM45C base metal. When the friction time was 1.0 seconds under the conditions, the maximum bending strength of the friction weld happened to be 1,647MPa, which is 78% the bending strength of SKH51 base metal(2,113MPa) and 87% of the bending strength of SM45C base metal(1,889MPa). When the friction time was 1.0 seconds under conditions, the maximum shear strength of the friction weld was observed to be 755MPa, which is 92% the shear strength of SKH51 base metal and 122% of the shear strength of SM45C base metal. According to the hardness test, the hardness distribution of the weld interface varied from Hv282 to Hv327. HAZ was formed from the weld interface to 1.2mm of SKH51 and 1.6mm of SM45C. Upon examination it was found that the microstructure became finer along with increase of friction revolution radius.

다층 FCA 용착금속의 수소취성 저항성 및 확산성 수소 방출 거동 (Hydrogen Embrittlement Resistance and Diffusible Hydrogen Desorption Behavior of Multipass FCA Weld Metals)

  • 유재석;곽현;이명진;김용덕;강남현
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.112-118
    • /
    • 2013
  • In this study, constant loading test (CLT) was performed to evaluate the hydrogen embrittlement resistance for multipass FCA weld metals of 600MPa tensile strength grade. The microstructures of weld metal-2 having the smallest carbon equivalent (Ceq=0.37) consisted of grain boundary ferrite and widmanstatten ferrite in the acicular ferrite matrix. The weld metal-1 having the largest Ceq=0.47, showed the microstructures of grain boundary ferrite, widmanstatten ferrite and the large amount of bainite (vol.%=19%) in the acicular ferrite matrix. The weld metal-3 having the Ceq=0.41, which was composed of grain boundary ferrite, widmanstatten ferrite, and the small amount of bainite (vol.%=9%) in the acicular ferrite matrix. Hydrogen desorption spectrometry (TDS) used to analyze the amount of diffusible hydrogen and trapping site for the hydrogen pre-charged specimens electrochemically for 24 hours. With increasing the current density of hydrogen pre-charging, the released amount of diffusible hydrogen was increased. Furthermore, as increasing carbon equivalent of weld metals, the released diffusible hydrogen was increased. The main trapping sites of diffusible hydrogen for the weld metal having a low carbon equivalent (Ceq=0.37) were grain boundaries and those of weld metals having a relatively high carbon equivalent (Ceq: 0.41~0.47) were grain boundaries and dislocation. The fracture time for the hydrogen pre-charged specimens in the constant loading test was decreased as the carbon equivalent increased from 0.37 to 0.47. This result is mainly due to the increment of bainite that is vulnerable to hydrogen embrittlement.

용접변형에의 곡률의 영향에 관한 연구 (On the Effect of Plate Curvature on Welding Deformation)

  • 이주성;이진태
    • 한국해양공학회지
    • /
    • 제24권2호
    • /
    • pp.67-73
    • /
    • 2010
  • A simplified finite element analysis has been used to predict the weld-induced deformation to bead-on-plate welding of steel plates having curvatures in the welding direction. In this study, the equivalent loading method based on inherent strain was used to investigate the effect of longitudinal curvature on the weld-induced deformation of curved plates. Equivalent loads were derived from the inherent strain distribution around the weld line, and the loads were used for linear finite element analyses. These kinds of numerical simulations can, of course, be performed by using the rigorous thermalelastic-plastic analysis method. This approach is not, however, practical for use in weld-induced deformation analysis of large and complex structures, such as ship structures, in view of computing time and cost. The present equivalent load approach has been applied to several plate models having curvatures in the welding direction, and the results are compared with those obtained by thermal-elastic-plastic analysis and also with those obtained by the other simplified method found in reference. As far as the present results are concerned, the weld-induced deformation of curved plates can be accurately predicted by the method presented in this paper.

Welding Gap Detecting and Monitoring using Neural Networks

  • Kang, Sung-In;Kim, Gwan-Hyung;Lee, Sang-Bae;Tack, Han-Ho
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.539-544
    • /
    • 1998
  • Generally, welding gap is a serious factor of a falling-off in weld quality among various kind of weld defect. Welding gap is created between two work piece in GMAW(Gas Metal Arc Welding) of horizontal fillet weld because surface of workpiece is not flat by cutting process. In these days, there were many attempts to detect welding gap. though we prevalently use the vision sensor or arc sensor in welding process, it is difficult to detect welding gap for improvement of welding quality. But we have a trouble to find relationship between welding gap and many welding parameters due to non-linearity of welding process. As mentioned about the various difficult problem, we can detect welding gap precisely using neural networks which are able to model non-linear function. Also, this paper was proposed real-time monitoring of weld bead shape to find effect of welding gap and to estimate weld quality. Monitoring of weld bead shape examined the correlation of welding parameters with bead eometry using learning ability of neural networks. Finally, the developed system, welding gap detecting system and bead shape monitoring system, is expected to the successful capability of automation of welding process by result of simulation.

  • PDF

초음파 금속용접 시 다층 퍼셉트론 뉴럴 네트워크를 이용한 용접품질의 In-process 모니터링 (In-process Weld Quality Monitoring by the Multi-layer Perceptron Neural Network in Ultrasonic Metal Welding)

  • ;박동삼
    • 한국기계가공학회지
    • /
    • 제21권6호
    • /
    • pp.89-97
    • /
    • 2022
  • Ultrasonic metal welding has been widely used for joining lithium-ion battery tabs. Weld quality monitoring has been an important issue in lithium-ion battery manufacturing. This study focuses on the weld quality monitoring in ultrasonic metal welding with the longitudinal-torsional vibration mode horn developed newly. As the quality of ultrasonic welding depends on welding parameters like pressure, time, and amplitude, the suitable values of these parameters were selected for experimentation. The welds were tested via tensile testing machine and weld strengths were investigated. The dataset collected for performance test was used to train the multi-layer perceptron neural network. The three layer neural network was used for the study and the optimum number of neurons in the first and second hidden layers were selected based on performances of each models. The best models were selected for the horn and then tested to see their performances on an unseen dataset. The neural network models for the longitudinal-torsional mode horn attained test accuracy of 90%. This result implies that proposed models has potential for the weld quality monitoring.

CF8M과 SA508 용접재의 열화거동과 기계적특성 평가 (Evaluation of Mechanical Properties with Thermal Aging in CF8M/SA508 Welds)

  • 우승완;최영환;권재도
    • 대한기계학회논문집A
    • /
    • 제28권12호
    • /
    • pp.1968-1973
    • /
    • 2004
  • Structural degradations are often experienced on the components of nuclear power plants in reactor pressure vessels (RPV) and steam generators (SG) when these components are exposed to high temperature and high pressure for a long period of time. Such conditions result in the change of microstructures and of mechanical properties of materials, which requires an evaluation of the safeguards related to structural integrity. In a primary reactor cooling system (RCS), a dissimilar weld zone exists between cast stainless steel (CF8M) in a pipe and low-alloy steel (SA508 cl.3) in a nozzle. Thermal aging is observed in CF8M as the RCS is exposed for a long period of time under the operating temperature between 290 and 33$0^{\circ}C$. Under the same conditions, it is well known that degradation is not observed in low alloy steel. An investigation of the effect of thermal aging on the various mechanical properties of the dissimilar weld zone is required. The purpose of the present investigation is to find the effect of thermal aging on the dissimilar weld zone. The specimens are prepared by an artificially accelerated aging technique maintained for various times at 43$0^{\circ}C$, respectively. Then, The various mechanical test for the dissimilar welds are performed.

오스테나이트계 스테인리스강 용착금속의 응고모드가 공식 생성 및 성장에 미치는 영향 x Effects of Solidification Modes on the Pit Initiation and Propagation in Austenitic Stainless Steel Weld Metals (Effects of Solidification Modes on the Pit Initiation and Propagation in Austenitic Stainless Steel Weld Metals)

  • 최한신;김규영;이창희
    • Journal of Welding and Joining
    • /
    • 제16권6호
    • /
    • pp.59-68
    • /
    • 1998
  • In this study, effects of solidification modes (primary $\delta$-ferrite, primary ${\gamma}$-austenite) on the pit initiation and propagation in the 304L and 316L austenitic stainless steel weld metals were investigated. The solidification mode of weld metal was controlled by the addition of nitrogen to Ar shielding gas. Through the electrochemical experiments (potentiodynamic anodic polarization and potentiostatic time-current transient test) and metallographic examination (microstructure and elemental distribution), the following results were obtained. The more the volume content of nitrogen in the shielding gas were, the lower critical current density for passivity was observed. In comparison with weldments solidified through the primary $\delta$-ferrite solidification mode and the primary ${\gamma}$-solidification mode, the former showed higher critical pitting potential and a longer incubation time for stable pit initiation than the latter. However, in the pit propagation stage the former exhibited a faster dissolution rate than the latter. These results were believed to ee related to the distribution of alloying elements such as Cr, Mo, Ni and S.

  • PDF