• Title/Summary/Keyword: Weld Image

Search Result 88, Processing Time 0.026 seconds

Image Enhancement of Simplified Ultrasonic CT Using Frequency Analysis Method

  • Kim, kyung-Cho;Hiroaki Fukuhara;Hisashi Yamawaki
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1627-1632
    • /
    • 2002
  • In this paper, a simplified ultrasonic CT system, which uses the information in three directions, that is, 90°, +45° and -45°about the inspection plane, is applied to the high strength steel, and the frequency analysis method for enhancing the C scan or CT image is developed. This frequency analysis method is based on the frequency response property of the material. By comparing the magnitudes in the frequency domain, the special frequency which shows a significant difference between the welded joint and base material was found and used to obtain a C scan or CT image. Experimental results for several kinds of specimens, having a welded joint by electron beam welding, a weld joint by arc welding, on a fatigue crack, showed that the obtained C scan or CT image has better resolution than the results of previous experiments using the maximum value of the received waveform.

A Study on the Image Processing Technique for Measurement of Nugget Geometry (용융부 형상 판독을 위한 영상처리기법)

  • 김상필;신현옥;최덕준;장희석
    • Proceedings of the KWS Conference
    • /
    • 1993.05a
    • /
    • pp.132-134
    • /
    • 1993
  • The conventional way of molten nugget size measurement in welding process have utilized the metal-microscope by examining the micro sectioned weld specimen after micro-etching procedure. This paper proposes a new method for exact measurement of molten nugget size with the aid of the digital image processing unit and some developed software. This method proved to be convenient and precise in that resulting resolution and accuracy are as good as that of the conventional method.

  • PDF

Vertical Space Analysis for Gradient Radiating Steel-tube Radiographic Image (경사조사(傾斜照射) 강판튜브 방사선 관측영상의 수직 방향 공간분석)

  • Hwang, Jung-Won;Hwang, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.29-31
    • /
    • 2007
  • In this paper we propose an directional analytic approach in image data space for X-ray image which is detected from the X-ray projection system. Such a radiographic nondestructive testing has long been used for steel-tube inspection and weld monitoring. The welded area and thickness of steel-tube are detected from gradient radiating mechanism based on the evaluation of biased X-ray source position. The welded area is an ellipse type on low contrast X-ray image including noise. Noise originates from most of elements of the system. such as shielding CCD camera, imaging screen, X-ray source, inspected object, electronic circuits and etc.. Projection incorrectness and noise influence on imaging quality is to be represented by vertical pixels' distribution. Space analysis due to vertical direction also shows the segmental possibility between regions by visual edge evaluation.

  • PDF

The implementation of interface between industrial PC and PLC for multi-camera vision systems (멀티카메라 비전시스템을 위한 산업용 PC와 PLC간 제어 방법 개발)

  • Kim, Hyun Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.453-458
    • /
    • 2016
  • One of the most common applications of machine vision is quality inspections in automated production. In this study, a welding inspection system that is controlled by a PC and a PLC equipped with a multi-camera setup was developed. The system was designed to measure the primary dimensions, such as the length and width of the welding areas. The TCP/IP protocols and multi-threading techniques were used for parallel control of the optical components and physical distribution. A coaxial light was used to maintain uniform lighting conditions and enhance the image quality of the weld areas. The core image processing system was established through a combination of various algorithms from the OpenCV library. The proposed vision inspection system was fully validated for an actual weld production line and was shown to satisfy the functional and performance requirements.

A study on development of automatic welding system for corrugated membranes of the LNG tank (LNG 탱크의 주름진 내벽박판용 자동용접시스템의 개발에 관한 연구)

  • 유제용;유원상;나석주;강계형;한용섭
    • Journal of Welding and Joining
    • /
    • v.14 no.1
    • /
    • pp.99-106
    • /
    • 1996
  • Development of an automatic TIG welding system incorporating a vision sensor and torch control mechanism leads to an improved welding quality and greater production efficiency. The automatic welding system should be greatly restricted in its size and weight for the LNG(Liquefied Natural Gas) storage tank and also provide a unique torch rotating mechanism which keeps the torch tip in the constant position while the angle is changed continuously to maintain the welding torch substantially perpendicular to the weld line. The developed system is driven by two translation axes X, Z and one rotational axis. A moving line window method is adopted to the image recognition of the corrugated membranes with specular reflection. This method decides original laser stripe patterns in image which is affected by multi-reflection. A self-teaching algorithm, which guides the automatic welding machine with the information provided by the CCD camera without any previous learning of a reference trajectory, was developed for tracking the corrugated membrane of the LNG tank along the weld line.

  • PDF

A Study on Development of the Optimization Algorithms to Find the Seam Tracking (용접선 추적을 위한 최적화 알고리즘 개발에 관한 연구)

  • Jin, Byeong-Ju;Lee, Jong-Pyo;Park, Min-Ho;Kim, Do-Hyeong;Wu, Qian-Qian;Kim, Il-Soo;Son, Joon-Sik
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.59-66
    • /
    • 2016
  • The Gas Metal Arc(GMA) welding, called Metal Inert Gas(MIG) welding, has been an important component in manufacturing industries. A key technology for robotic welding processes is seam tracking system, which is critical to improve the welding quality and welding capacities. The objectives of this study were to develop the intelligent and cost-effective algorithms for image processing in GMA welding which based on the laser vision sensor. Welding images were captured from the CCD camera and then processed by the proposed algorithm to track the weld joint location. The proposed algorithms that commonly used at the present stage were verified and compared to obtain the optimal one for each step in image processing. Finally, validity of the proposed algorithms was examined by using weld seam images obtained with different welding environments for image processing. The results proved that the proposed algorithm was quite excellent in getting rid of the variable noises to extract the feature points and centerline for seam tracking in GMA welding and could be employed for general industrial application.

Discrimination for Line-clustering Segmental Approach to Steel-tube X-ray Image (경사조사(傾斜照射) 강판튜브 방사선영상 영역특성 분석)

  • Hwang, Jung-Won;Hwang, Jae-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.399-400
    • /
    • 2007
  • This paper proposes an regional analytic approach in image data space for radiographic image. Image is segmented into four regions, such as background, thickness, weld area and tube area, due to directional properties. Each region has its own gray level distribution, contrast range and noise property, originated from X-ray project mechanism and electric control system itself. Projection incorrectness and noise influence included on imaging quality is analyzed functionally and statistically. The experimental results shows not only segmental effects, but also visual edge evaluation.

  • PDF

Segmentation of Welding Defects using Level Set Methods

  • Mohammed, Halimi;Naim, Ramou
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.1001-1008
    • /
    • 2012
  • Non-destructive testing (NDT) is a technique used in science and industry to evaluate the properties of a material without causing damage. In this paper we propose a method for segmenting radiographic images of welding in order to extract the welding defects which may occur during the welding process. We study different methods of level set and choose the model adapted to our application. The methods presented here take the property of local segmentation geodesic active contours and have the ability to change the topology automatically. The computation time is considerably reduced after taking into account a new level set function which eliminates the re-initialization procedure. Satisfactory results are obtained after applying this algorithm both on synthetic and real images.

An Assessment of the Accuracy for Digital Radiography Image (디지털 방사선투과영상의 정밀성 평가에 관한 연구)

  • Park, Sang-Ki;Ahn, Yean-Shik;Gil, Doo-Song
    • Journal of Welding and Joining
    • /
    • v.27 no.2
    • /
    • pp.51-56
    • /
    • 2009
  • Film based radiography imaging technique has been applied to the non-destructive test in medical, aircraft, and power industries contributing to the development of the industries. However, the complex process for imaging and analysis has increasingly demanded the reformation of the radiography test. A digital radiography imaging technologies has been com out from the demand. This study was mainly focused on the assessment on the accuracy for the each image from digital radiography test and film radiography test was proven to crate a better image in sensitivity than film radiography test. In the IQI(Image quality indicator) transmission test, one or two more line can be seen in digital image than in film image. When applying to the boiler tube weld, film image is detectable to the 1.0mm depth flaw; and digital image to the 0.5mm depth flaw. As a result of this study, digital radiography technology is determined to enhance the image quality, compared to film radiography technologies

The Study on Image Sensitivity Evaluation For Digital Radiography Image (디지털 방사선 투과영상의 식별도 평가 연구)

  • Park, S.K.;Lee, Y.H.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.70-77
    • /
    • 2008
  • The purpose of this study is to compare the quality of digital radiography image with that of classical film images for welded structure in power plants. The CMOS(Complementary Metal Oxide Semiconductor) flat panel detecter and Agfa D5 film are used to image flaw specimens respectively. In the test, CMOS flat panel detector has been determined to have a better image than that of film image. In the IQI(Image Quality Indicator) transmission test, one or two more line can be seen in digital image than in film image. Digital Radiography Test enabled to successfully detect all defects on the weld specimens fabricated with real reheat stem pipe and boiler tube as well. In the specific comparison test, Digital radiography test detected micro flaws in the size of 0.5 mm in length by 0.5 mm in depth. However, film test has limited it to 1.0 mm in length by 1.0 mm in depth. As a result of this study, digital radiography technology is estimated well enough to perform the inspection in the industry with far more cost effective way, compared to the classical film test.

  • PDF