• Title/Summary/Keyword: Weissella

Search Result 117, Processing Time 0.035 seconds

Isolation and Identification of Weissella kimchii from Green Onion by Cell Protein Pattern Analysis

  • Kim, Tae-Woon;Lee, Ji-Yeon;Song, Hee-Sung;Park, Jong-Hyun;Ji, Geun-Eog;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.105-109
    • /
    • 2004
  • This study was conducted to investigate the potential origin of Weissella species, which were found in ingredients of kimchi, such as salted Chinese cabbage, radish, green onion, red pepper powder, pickled shrimps, garlic, and ginger. Ten strains of Weissella species (Weissella thailandensis, W. kimchii, W. koreensis, W. minor, W. halotolerans, W. hellenica, W. kandleri, W. confusa, W. viridescens, and W. paramesenteroides) and lactic acid bacteria isolated from ingredients of kimchi were analyzed by SDS-PAGE of whole-cell proteins. Several strains with patterns identical to those of Weissella kimchii were isolated from green onion. On the basis of biochemical characteristics and 16S rDNA sequence comparisons, these strains were identified as Weissella kimchii, suggesting green onion as a major origin of Weissella kimchii found in kimchi.

Development and Application of PCR-Based Weissella Species Detection Method with recN Gene Targeted Species-Specific Primers (RecN 유전자 특이적 PCR을 이용한 Weissella 속 유산균의 검출법 개발 및 적용)

  • Lee, Myeong-Jae;Cho, Kyeung-Hee;Han, Eung-Soo;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.1
    • /
    • pp.70-76
    • /
    • 2011
  • PCR-based Weissella species-specific detection method was developed to apply for the discrimination of Korean and Chinese kimchi by detecting a Weissella species only found in Korean or Chinese kimchi. PCR primers were designed from the species-specific sequence in the recN gene of each species. The primers allowed the species-specific detection and identification of nine species in the genera Weissella, and were successfully applied to the detection of W. cibaria, W. confusa, W. koreensis, and W. soli in kimchi with 20 ng template DNA. W. cibaria, W. confusa, and W. koreensis were detected from the Korean kimchi samples tested but W. soli was not detected. However, the four species were detected from Chinese kimchi samples. PCR-based W. soli-specific detection could not be perfectly applied as the Chinese kimchi discriminating method but has significance as an approach to evaluate the potential of scientific verification method based on the difference of microbial community.

Importance of Weissella Species during Kimchi Fermentation and Future Works (김치발효에서 Weissella 속의 중요성과 앞으로의 연구 과제)

  • Lee, Kang-Wook;Park, Ji-Yeong;Chun, Ji-Yeon;Han, Nam-Soo;Kim, Jeong-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.341-348
    • /
    • 2010
  • Weissella species are one of the most common lactic acid bacteria isolated from kimchi during kimchi fermentation but few researches have been done on this group of organisms. Its recent establishment as a separate genus is one reason for the few studies. Another reason is probably poor resolution of identification methods based on biochemical properties. Currently, 14 species are registered in the genus of Weissella but new members are reported continuously. It is important to understand at detail the properties and roles of Weissella species during kimchi fermentation if desirable properties of Weissella species are fully utilized for the production of high quality kimchi with good taste and enhanced biofunctionalities.

Isolation, Identification, and Characterization of Weissella Strains with High Ornithine Producing Capacity from Kimchi (김치로부터 오르니틴 생성능을 갖는 Weissella 속 균주의 분리, 동정 및 특성)

  • Yu, Jin-Ju;Park, Hyoung-Ju;Kim, Su-Gon;Oh, Suk-Heung
    • Korean Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.339-345
    • /
    • 2009
  • Two lactic acid bacteria (LAB) with high ornithine-producing capacity were isolated from kimchi. Examination of the biochemical features using an API kit indicated that the strains belonged to the members of Weissella genus. They were gram positive, short rod-type bacteria, and able to grow anaerobically with $CO_2$ production. The isolates grew well on MRS broth at $25\sim37^{\circ}C$ and pH of 6.0~7.0. The optimum temperature and pH for growth are $30^{\circ}C$ and pH 6.5. The isolates fermented arabinose, ribose, xylose, glucose but not cellobiose, galactose, raffinose, or trehalsoe. The 16S rDNA sequences of isolates showed 99.6% and 99.7% homology with the Weissella koreensis S5623 16S rDNA (access no. AY035891). They were accordingly identified and named as Weissella koreensis OK1-4 and Weissella koreensis OK1-6, and could produce ornithine from MRS broth supplemented with 1% of arginine at a productivity of 27.01 and 31.41 mg/L/h, respectively. This is the first report on the production of ornithine by the genus Weissella isolated from kimchi.

Bacterial Diversity in the Initial Fermentation Stage of Korean and Chinese Kimchi (발효 초기 한국산 및 중국산 김치의 Bacteria 다양성 평가)

  • Lee, Myeong-Jae;Cho, Kyeung-Hee;Han, Eung-Soo;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.2
    • /
    • pp.207-215
    • /
    • 2010
  • The purpose of this research is to draw the bacterial community difference between Korean and Chinese kimchi for future use in the confirmation of kimchi origin. Initial fermentation stage kimchi samples (above pH 5) were used for the analysis of bacterial diversity. From 26 Korean kimchi samples, 1,017 strains in the 45 genera and from 22 Chinese kimchi samples, 842 strains in the 54 genera were isolated with use of marine medium, nutrient medium, succinate minimal medium (SMM), leuconostocs selective medium (LUSM) agars. In the order of isolated numbers, Bacillus, Weissella, Leuconostoc, Pseudomonas, and Lactobacillus genera and Bacillus, Weissella, Lactobacillus, Pseudomonas, Serratia, and Enterobacter genera were predominated in Korean and Chines kimchi, respectively. Among the isolated lactic acid bacteria, Weissella spp. were isolated most dominantly owing to the biased growth of Weissella spp. on LUSM agar. Species in the genera Leuconostoc and Lactobacillus were the next frequently isolated LAB from Korean and Chinese kimchi, respectively. Weissella confusa was isolated only from Korean kimchi and W. soli and Serratia proteamculans were isolated only from Chinese kimchi. They have a possibility to be used as target bacteria to differentiate Korean kimchi from Chinese kimchi.

Fermentation of rice flour with Weissella koreensis HO20 and Weissella kimchii HO22 isolated from kimchi and its use in the making of jeolpyeon (김치유산균(Weissella koreensis HO20, Weissella kimchii HO22)으로 발효한 쌀가루의 이화학적 특성 및 이를 이용한 절편의 제조)

  • Choi, Hyejung;Lee, Hwawon;Yoon, Sun
    • Korean journal of food and cookery science
    • /
    • v.29 no.3
    • /
    • pp.267-274
    • /
    • 2013
  • Demand for a rice cake, a popular traditional food in Korea, is rising, but its industrial-scale production is extremely difficult due to its short shelf-life caused by starch retrogradation and microbial spoilage. By means of the sourdough fermentation technique, we attempt to develop rice cakes with a longer shelf-life. Heterofermentative lactic acid bacteria (Weissella koreensis HO20, Weissella kimchii HO22) isolated from kimchi were used to ferment wet-milled rice flour for their abilities to produce exopolysaccharides and to inhibit the microbial spoilage of rice cakes. After 24 hr of fermentation at $25^{\circ}C$, viable cell counts in rice dough increased from $10^6$ CFU/g to $10^8$ CFU/g and total titratable acidity increased from 0.05% to 0.20%, whereas pH decreased from 6.5 to 5.1. Fermented rice flour showed significantly lower peak, trough, and final viscosities as well as breakdown and setback viscosities measured by rapid viscoanalyzer. Both lactic acid bacteria showed in vitro antifungal activity against Penicillium crustosum isolated from rice cakes. The antifungal activity remained constant after the treatments with heat, proteinase K and trypsin, but fell significantly by increase of pH. Rice cakes made of fermented rice flour were found to retard mycelial growth of P. crustosum. The degree of retrogradation as measured by the hardness of the rice cake was significantly reduced by the use of fermented rice flour. The results suggest that use of fermented rice flour has a beneficial role in retarding starch retrogradation and in preventing fungal growth, hence extending the shelf-life of rice cakes.

Cytotoxic, Antioxidative, and ACE Inhibiting Activities of Dolsan Leaf Mustard Juice (DLMJ) Treated with Lactic Acid Bacteria

  • Yoo Eun-Jeong;Lim Hyun-Soo;Park Kyung-Ok;Choi Myeong-Rak
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.60-66
    • /
    • 2005
  • This study was performed to know whether there is any change of physiological activity in DLMJ which is inoculated by lactic acid bacteria. Lactic acid bacteria were isolated from Dolsan leaf mustard Kimchi (DLMK) at $20^{\circ}C$. In the optimum ripening period, the population of Leuconostoc and Lactobacilli in the DLMK were found to be high. The Leuconostoc, Lactobacilli and Lactococci strains were identified as Leuconostoc mesenteroides, Leuconostoc gelidum, Weissella confusa, Lactobacillus plantarum, Lactobacillus raffinolactis, Lactococcus lactis and Weissella confusa using the Biolog system. The most predominant strain which was isolated from DLMK was Weissella confusa. As the results of the phylogenetic analysis using 16s rDNA sequence, the Weissella confusa turned out to be Weissella kimchii, with 99.0% similarity. To investigated the change of physiological activity in DLMJ by lactic acid bacteria, 7 predominant strains inoculated to DLMJ (Dolsan Leaf Mustard Juice). The cytotoxicity was found to be under $19.55\%$ all cases. Also, the antioxidative activity of the DLMJ treated with lactic acid bacteria was very low, which might have been due to the reduced antioxidative phytochemicals during the preparation of the sterile sample. The ACE inhibiting activity of DLMJ by inoculation with Weissella kimchii was shown to be the highest ($94.0\%$). This could be that the degradation of sulfur containing materials in DLMJ by Weissella kimchii gave rise to ACE inhibiting activity.

Effect of Bacteriophages on Viability and Growth of Co-cultivated Weissella and Leuconostoc in Kimchi Fermentation

  • Kong, Se-Jin;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.558-561
    • /
    • 2019
  • This study aimed to understand the survival and growth patterns of bacteriophage-sensitive Weissella and Leuconostoc strains involved in kimchi fermentation. Dongchimi kimchi was prepared, and Weissella and Leuconostoc were co-cultivated in the dongchimi broth. Weissella cibaria KCTC 3807 growth was accompanied by rapid lysis with an increase in the bacteriophage quantity. Leuconostoc citreum KCCM 12030 followed the same pattern. The bacteriophage-insensitive strains W. cibaria KCTC 3499 and Leuconostoc mesenteroides KCCM 11325 survived longer under low pH as their growth was not accompanied by bacteriophages. The bacteriophage lysate of W. cibaria KCTC 3807 accelerated and promoted the growth of Leuconostoc. Overall, our results show that bacteriophages might affect the viability and population dynamics of lactic acid bacteria during kimchi fermentation.

Isolation of Leuconostoc and Weissella Species Inhibiting the Growth of Lactobacillus sakei from Kimchi (김치로부터 Lactobacillus sakei 생육저해 Leuconostoc 및 Weissella 속 균주의 분리)

  • Lee, Kwang-Hee;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.2
    • /
    • pp.175-181
    • /
    • 2011
  • Kimchi is a group of traditional fermented vegetable foods in Korea and known to be the product of a natural mixed-fermentation process carried out principally by lactic acid bacteria (LAB). According to microbial results based on conventional identification, Leuconostoc mesenteroides and Lactobacillus plantarum were considered to be responsible for the good taste and over-ripening of kimchi, respectively. However, with the application of phylogenetic identification, based on 16S ribosomal RNA gene similarities, a variety of Leuconostoc and Lactobacillus species not detected in the previous studies have been isolated, together with a species in the genus Weissella. Additionally, Lactobacillus sakei has been accepted as the most populous LAB in over-ripened kimchi. In this study, Leuconostoc and Weissella species inhibiting the growth of Lb. sakei were isolated from kimchi for future applications to do with kimchi fermentation. From 25 kimchi samples, 378 strains in the genera Leuconostoc and Weissella were isolated and 68 strains identified as Lc. mesenteroides, Lc. citreum, Lc. lactis, W. cibaria, W. confusa, and W. paramesenteroides exhibited growth inhibition against Lb. sakei. Most of the strains also had antagonistic activities against Lb. brevis, Lb. curvatus, Lb. paraplantarum, Lb. pentosus, and Lb. plantarum. Their antagonistic activities against Lb. sakei were more remarkable at lower temperatures of incubation.

Application of 16S rDNA PCR-RFLP Analysis for the Rapid Identification of Weissella Species (Weissella 속 유산균의 빠른 동정을 위한 16S rDNA PCR-RFLP 분석법의 적용)

  • Lee, Myeong-Jae;Cho, Kyeung-Hee;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.455-460
    • /
    • 2010
  • A polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) analysis was applied to detect and identify ten Weissella spp. frequently found in kimchi. The previously reported genus-specific primers designed from 16S rDNA sequences of Weissella spp. were adopted but PCR was performed at the increased annealing temperature by $4^{\circ}C$. The sizes of amplified PCR products and restricted fragments produced by AluI, MseI, and BceAI endonucleases were well correspond with the expected sizes. W. kandleri, W. koreensis, W. confusa, W. minor, W. viridescens, W. cibaria, and W. soli were distinguished by AluI and MseI and W. hellenica and W. paramesenteroides were identified by BceAI. W. thailandensis was distinguished when restriction pattern of other species was compared but identified by the single use of MspI.