• Title/Summary/Keyword: Weir angle

Search Result 18, Processing Time 0.018 seconds

The Flow Characteristic Variation by Installing a Movable Weir having Water Drainage Equipment on the Bottom (저층수 배출식 가동보 설치에 따른 흐름특성)

  • Choi, Gye-Woon;Byeon, Seong-Joon;Kim, Young-Kyu;Cho, Sang-Uk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.117-122
    • /
    • 2008
  • Generally, water is taken through channels and rivers, in which there are many weirs and structures, which cross rivers and temporally hold up water. But this way has its own shortcomings. It is main reason that the water flows through structures, and backwater come into being. So it causes many water quality problems and some flood side-effects and so on. In this study, among the various movable weirs, we installed bottom-discharged and air pressure movable weir in the experimental channel. And we analyzed flowing influence, which is followed by the angle variation of movable weir. We also make further study the flow characteristic variation followed by installing entrance at the bottom to discharge the bottom water. The analysis result was that installed weir angle was increased, and the discharge also gradually increased. The installed weir angle depended on the water quantity, which can be excluded in the bottom. In case of velocity, there was increased as maximum 21.9 times, according to there is entrance or not at the bottom. And in case of water level, it showed the water level of locally above the average decrease in the upper river of weir.

Experimental Analysis of Flow Characteristics and Bed Changes Over Oblique Weirs (위어 설치각도에 따른 흐름특성 및 하도 변화의 실험적 분석)

  • Jang, Chang-Lae;Kim, Gi Jung
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.4
    • /
    • pp.245-254
    • /
    • 2017
  • In this study, the flow characteristics and bed changes in the upstream and downstream of weirs with the variation of the weir angels are investigated quantitatively through the laboratory experiments. As the angle of weir increases, the effective weir length decreases. Delta is developed by the sediments inflow upstream and migrates downstream. Delta migration speed decreases as it approaches to the weir upstream, and the size is getting big. As the dimensionless weir length increases, the dimensionless wave length decreases at the downstream of the weir. However, the dimensionless bar height decreases. The dimensionless wavelength increases with the bar height downstream from the weir.

An Aanalytical Study of Structural Performance Evaluation for Multi-stage Control Movable Weir (다단제어 가동보의 구조성능 평가를 위한 해석적 연구)

  • Lee, Haesoo;Park, Taehyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.61-68
    • /
    • 2021
  • Movable weirs with multi-stage control are necessary in many Korean rivers to actively control the water storage level. A mesh dependency test was performed to determine the appropriate number of meshes for structural analysis of movable weirs. The standing angles of movable weirs were set to 60°, 45°, 30°, and 15° for stress analysis. The standing angle of 0° was excluded from the analysis because it was unloaded. Changes in the standing angle led to changes in the water depth, maximum pressure, maximum strain, and maximum stress. The maximum average stress and the structural safety of the multi-stage control movable weir were computed and tested using the Ansys FEA software package.

Experimental analysis of the sedimentation processes by variation of standing angle in the improved-pneumatic-movable weir (실내실험에 의한 가동보 기립각도 변화에 대한 토사의 퇴적 과정 분석)

  • Lee, Kyung Su;Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.9
    • /
    • pp.795-802
    • /
    • 2018
  • This study investigates the hydraulic characteristics and the delta development processes in the improved-pneumatic-movable weir by considering the standing angle of the weir through laboratory experiments. The delta migration speed decreases rapidly with time. As the ratio of delta height to water depth increases, the dimensionless delta migration speed decreases at the delta point. Therefore, the water depth decreases as the delta height increases. Although the delta volume is large due to the effective height of the delta, the delta migration speed and sediment deposition decreases because of the backwater effect on the delta. On the same bed slope condition, the larger the weir height, the larger the delta volume and the ratio of delta height to delta front length is close to 1.0. The delta development could be suppressed when the weir is high. Therefore, the condition that the weir is high has the suppressing effect on the delta developments.

A Study on the Estimation of Discharge Coefficients with Variations of Side Weir Angle (횡월류 위어 유입각 변화에 따른 유량계수 추정 기초 연구)

  • Wan-Seop Pi;Hyung-Joon Chang;Kye-Won Jun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.1
    • /
    • pp.81-89
    • /
    • 2023
  • Recently, due to global warming and urbanization due to the influence of abnormal weather, weather changes are increasing worldwide. Various measures have been proposed to reduce flood damage as flood volume increases due to problems such as an increase in impermeable area due to urbanization and reckless development. In this study, flow characteristics and overflow volume were analyzed using FLOW-3D, a three-dimensional CFD model, in accordance with changes in the cross-flow weir inlet angle installed in the meandering river section, and a basic study was conducted to evaluate the overflow capacity and calculate the flow coefficient. As a result of the analysis, the smaller the inflow angle of the transverse overflow, the lower the water level and flow rate of the main water flow after passing the transverse overflow, and the higher the inflow angle, the higher the water level and the flow rate. In addition, it was confirmed that the direct downstream flow rate decreased compared to the upstream flow rate when the inflow angle of the transverse overflow was 40° or higher.

Analysis of submerged flow characteristics of the improved-pneumatic-movable weir through the laboratory experiments (개량형 공압식 가동보의 잠김흐름 특성 분석을 위한 실험연구)

  • Lee, Kyung Su;Jang, Chang-Lae;Lee, Namjoo
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.7
    • /
    • pp.615-623
    • /
    • 2016
  • This Study calculated the Submerged Flow Characteristics and Discharge coefficient by the rising angular change of the Improved-Pneumatic-Movable. According to the result, the smaller the ratio of weir height and weir length (L/W) or the weir standing angle, the bigger of the downstream head ($H_2$). The change of discharge reduction factor ($Q_s/Q_1$), by the hight from weir crest to downstream surface and the ratio form weir crest to upstream water height ($h_t/H$), was decreased when the $h_t/H$ closed to number 1. Although the weir water depth of the down-stream was shallower level than the up-stream, the velocity was faster then before. And the more the flow, the less the gab between the upper and lower reaches level. And when the same flow condition, the downstream head ($H_2$) was increased when the L/W was bigger. The Submerged Flow Discharge coefficient of Improved-Pneumatic-Movable weir was made by the upstream approach flow head and the upper lower stream flow condition, not by the physical data of Movable weir.

Analysis of Flow Characteristics of the Improved-Pneumatic-Movable Weir through the Laboratory Experiments (실내실험을 통한 개량형 공압식 가동보의 월류흐름 특성 분석)

  • Lee, Kyung Su;Jang, Chang-Lae;Lee, Namjoo;Ahn, Sang Jin
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1007-1015
    • /
    • 2014
  • This study investigates the discharge coefficient of Improved-Pneumatic-Movable (IPM) weir through the weir, a kind of movable weirs, to estimate much more accurate rating curves using laboratory flume experiments. The discharge coefficient ($C_d$) is from 0.613 to 0.634 by the stand-up angle of the weir. The upstream Froude Number ($F_{r1}$), relative crest length(${\xi}$), Headwater Ratio ($H_1/W$), the Overflow depth ratio of weir crest ($y_c/y_1$) was changed by the upstream. And the downstream Froude number ($F_{r2}$), the Overflow depth ratio of weir crest and Downstream Water depth ($y_c/y_2$) was changed by the downstream. The ratio of Downstream and Up and Downstream water Depth (${\Delta}y/y_2$) was found to be changed by both of the up and downstream flow. They considered the major influence variables and derived the Discharge coefficient Formula at this study. The Discharge coefficient of the Improved-Pneumatic-Movable (IPM) weir was settled by the height of the Movable weir, that is to say, it was settled by the flow conditions of upstream approach flow head and physical data according to the standing angle.

Experimental Study for Flushing of Sediment Bypass Pipe underneath Rubber Weir (고무보 저층수 배출관의 유사 배제 성능 실험 연구)

  • Jeong, Seok Il;Lee, Seung Oh
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.133-140
    • /
    • 2016
  • Most small weir installed in Korea is concrete solidated weir. Fixed weir causes stagnant flow, which leads to deposit sediment just upstream of weir. As time goes on, it would induce reduction of water storage capacity and invoke the serious water quality issues. Therefore, there has been a growing interest in movable weir. Especially, the flexible rubber weir is easy to install and possible to operate in extreme environments. However, even though this type can be flatable, it is also not free from sediment deposition problem. Thus, to enhance the ability of releasing deposition the bypass pipe was constructed underneath it. In this study the performance of its ability was examined with hydraulic model test. This bypass pipe was designed with 3 different dimensions to connect between each bottom of upstream and downstream of a weir, such as Type A, B, and C. The efficiency of drainage of deposition upstream was studied under two water of upstream and sediment heights. In addition, the ability of sediment emission through the bypass pipe after the pipe was blocked by debris like soil, vegetation et al. was examined by video monitoring. From this study, it was suggested a dimensionless equation which show the relationship of variable parameters and amount of emission sediment through bypass pipe. And it was found that the most significant factors on efficiency of releasing were elbow angle and discharge, and the ability of emission when the pipe was blocked was most highly influenced in tilting length.

An Estimation of Discharge Coefficients with the Variations of Side Weir Shape (횡월류위어의 형상에 따른 유량자수 추정)

  • Song, Jai-Woo;Park, Sung-Sik;Kim, Ji-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.1 s.174
    • /
    • pp.51-62
    • /
    • 2007
  • To estimate more accurately the outflow over a sharp crested side weir, it is necessary to analyze the flow characteristics over side weir and to estimate the discharge coefficient in the weir equation. The purpose of this study is to estimate the discharge coefficients of sharp crested rectangular and triangular side weirs by means of hydraulic model experiments with the variations of upstream Froude number in the main channel and length and apex angle. Experimental results show that the discharge coefficients depend on the shape and geometric conditions of side weir as well as the upstream Froude number in the main channel. Through the multiple regression analysis, formulas of discharge coefficient for rectangular and triangular types are proposed and its applicability is confirmed by comparing estimated and measured discharges over side weirs.

Discharge Coefficient of Side Weir for Various Curvatures Simulated by FLOW-3D (FLOW-3D를 이용한 다양한 곡률에 대한 횡월류 위어의 유량계수 산정)

  • Jeong, Chang Sam
    • Journal of Korean Society of Disaster and Security
    • /
    • v.8 no.1
    • /
    • pp.5-13
    • /
    • 2015
  • In this study, the lateral overflow discharge coefficients for the curvatures of side weir on meandering channel were analyzed. The side weir installed in accordance with the variation of the radius of curvature of the central angle bends with $180^{\circ}$. FLOW-3D model is applied to calculate the discharge coefficients of the side-weir on meandering and straight channels and the characteristics of the discharge coefficients are analysed. In order to verify the numerical model, the results from the hydraulic experiment conducted by the former research are compared with the results simulated by FLOW-3D in the same conditions. The discharge coefficients are calculated for the ratio between curvature ($R_c$) and channel width (b), and the ratio between over flow discharge of the straight channel ($Q_{wc}$) and the meandering channel ($Q_{wc}$) are compared. As the result, the discharge coefficients depend on the weir depth on upstream, and the radius of curvature, so that the discharge coefficients of side weir on the meandering channel can be estimated by them on the straight channel.