• Title/Summary/Keyword: Weighted Least Square Estimator

Search Result 23, Processing Time 0.022 seconds

Fast robust variable selection using VIF regression in large datasets (대형 데이터에서 VIF회귀를 이용한 신속 강건 변수선택법)

  • Seo, Han Son
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.4
    • /
    • pp.463-473
    • /
    • 2018
  • Variable selection algorithms for linear regression models of large data are considered. Many algorithms are proposed focusing on the speed and the robustness of algorithms. Among them variance inflation factor (VIF) regression is fast and accurate due to the use of a streamwise regression approach. But a VIF regression is susceptible to outliers because it estimates a model by a least-square method. A robust criterion using a weighted estimator has been proposed for the robustness of algorithm; in addition, a robust VIF regression has also been proposed for the same purpose. In this article a fast and robust variable selection method is suggested via a VIF regression with detecting and removing potential outliers. A simulation study and an analysis of a dataset are conducted to compare the suggested method with other methods.

Temporal hierarchical forecasting with an application to traffic accident counts (시간적 계층을 이용한 교통사고 발생건수 예측)

  • Jun, Gwanyoung;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.2
    • /
    • pp.229-239
    • /
    • 2018
  • This paper introduces how to adopt the concept of temporal hierarchies to forecast time series data. Similarly as in hierarchical cross-sectional data, temporal hierarchies can be constructed for any time series data by means of non-overlapping temporal aggregation. Reconciliation forecasts with temporal hierarchies result in more accurate and robust forecasts when compared with the independent base and bottom-up forecasts. As an empirical example, we forecast traffic accident counts with temporal hierarchies and observe that reconciliation forecasts are superior to the base and bottom-up forecasts in terms of forecast accuracy.

A Study on Real-time State Estimation for Smart Microgrids (스마트 마이크로그리드 실시간 상태 추정에 관한 연구)

  • Bae, Jun-Hyung;Lee, Sang-Woo;Park, Tae-Joon;Lee, Dong-Ha;Kang, Jin-Kyu
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.419-424
    • /
    • 2012
  • This paper discusses the state-of-the-art techniques in real-time state estimation for the Smart Microgrids. The most popular method used in traditional power system state estimation is a Weighted Least Square(WLS) algorithm which is based on Maximum Likelihood(ML) estimation under the assumption of static system state being a set of deterministic variables. In this paper, we present a survey of dynamic state estimation techniques for Smart Microgrids based on Belief Propagation (BP) when the system state is a set of stochastic variables. The measurements are often too sparse to fulfill the system observability in the distribution network of microgrids. The BP algorithm calculates posterior distributions of the state variables for real-time sparse measurements. Smart Microgrids are modeled as a factor graph suitable for characterizing the linear correlations among the state variables. The state estimator performs the BP algorithm on the factor graph based the stochastic model. The factor graph model can integrate new models for solar and wind correlation. It provides the Smart Microgrids with a way of integrating the distributed renewable energy generation. Our study on Smart Microgrid state estimation can be extended to the estimation of unbalanced three phase distribution systems as well as the optimal placement of smart meters.

  • PDF