• Title/Summary/Keyword: Weighted Information Entropy

Search Result 32, Processing Time 0.01 seconds

Effect of Nonlinear Transformations on Entropy of Hidden Nodes

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • v.10 no.1
    • /
    • pp.18-22
    • /
    • 2014
  • Hidden nodes have a key role in the information processing of feed-forward neural networks in which inputs are processed through a series of weighted sums and nonlinear activation functions. In order to understand the role of hidden nodes, we must analyze the effect of the nonlinear activation functions on the weighted sums to hidden nodes. In this paper, we focus on the effect of nonlinear functions in a viewpoint of information theory. Under the assumption that the nonlinear activation function can be approximated piece-wise linearly, we prove that the entropy of weighted sums to hidden nodes decreases after piece-wise linear functions. Therefore, we argue that the nonlinear activation function decreases the uncertainty among hidden nodes. Furthermore, the more the hidden nodes are saturated, the more the entropy of hidden nodes decreases. Based on this result, we can say that, after successful training of feed-forward neural networks, hidden nodes tend not to be in linear regions but to be in saturated regions of activation function with the effect of uncertainty reduction.

Infrared Target Extraction Using Weighted Information Entropy and Adaptive Opening Filter

  • Bae, Tae Wuk;Kim, Hwi Gang;Kim, Young Choon;Ahn, Sang Ho
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.1023-1031
    • /
    • 2015
  • In infrared (IR) images, near targets have a transient distribution at the boundary region, as opposed to a steady one at the inner region. Based on this fact, this paper proposes a novel IR target extraction method that uses both a weighted information entropy (WIE) and an adaptive opening filter to extract near finely shaped targets in IR images. Firstly, the boundary region of a target is detected using a local variance WIE of an original image. Next, a coarse target region is estimated via a labeling process used on the boundary region of the target. From the estimated coarse target region, a fine target shape is extracted by means of an opening filter having an adaptive structure element. The size of the structure element is decided in accordance with the width information of the target boundary and mean WIE values of windows of varying size. Our experimental results show that the proposed method obtains a better extraction performance than existing algorithms.

Computing Semantic Similarity between ECG-Information Concepts Based on an Entropy-Weighted Concept Lattice

  • Wang, Kai;Yang, Shu
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.184-200
    • /
    • 2020
  • Similarity searching is a basic issue in information processing because of the large size of formal contexts and their complicated derivation operators. Recently, some researchers have focused on knowledge reduction methods by using granular computing. In this process, suitable information granules are vital to characterizing the quantities of attributes and objects. To address this problem, a novel approach to obtain an entropy-weighted concept lattice with inclusion degree and similarity distance (ECLisd) has been proposed. The approach aims to compute the combined weights by merging the inclusion degree and entropy degree between two concepts. In addition, another method is utilized to measure the hierarchical distance by considering the different degrees of importance of each attribute. Finally, the rationality of the ECLisd is validated via a comparative analysis.

Multi-level thresholding using Entropy-based Weighted FCM Algorithm in Color Image (Entropy 기반의 Weighted FCM 알고리즘을 이용한 컬러 영상 Multi-level thresholding)

  • Oh, Jun-Taek;Kwak, Hyun-Wook;Kim, Wook-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.73-82
    • /
    • 2005
  • This paper proposes a multi-level thresholding method using weighted FCM(Fuzzy C-Means) algorithm in color image. FCM algerian determines a more optimal thresholding value than the existing methods and can extend to multi-level thresholding. But FCM algerian is sensitive to noise because it doesn't include spatial information. To solve the problem, we can remove noise by applying a weight based on entropy that is obtained from neighboring pixels to FCM algerian. And we determine the optimal cluster number by using within-class distance in code image based on the clustered pixels of each color component. In the experiments, we show that the proposed method is more tolerant to noise and is more superior than the existing methods.

Image Deblocking Scheme for JPEG Compressed Images Using an Adaptive-Weighted Bilateral Filter

  • Wang, Liping;Wang, Chengyou;Huang, Wei;Zhou, Xiao
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.631-643
    • /
    • 2016
  • Due to the block-based discrete cosine transform (BDCT), JPEG compressed images usually exhibit blocking artifacts. When the bit rates are very low, blocking artifacts will seriously affect the image's visual quality. A bilateral filter has the features for edge-preserving when it smooths images, so we propose an adaptive-weighted bilateral filter based on the features. In this paper, an image-deblocking scheme using this kind of adaptive-weighted bilateral filter is proposed to remove and reduce blocking artifacts. Two parameters of the proposed adaptive-weighted bilateral filter are adaptive-weighted so that it can avoid over-blurring unsmooth regions while eliminating blocking artifacts in smooth regions. This is achieved in two aspects: by using local entropy to control the level of filtering of each single pixel point within the image, and by using an improved blind image quality assessment (BIQA) to control the strength of filtering different images whose blocking artifacts are different. It is proved by our experimental results that our proposed image-deblocking scheme provides good performance on eliminating blocking artifacts and can avoid the over-blurring of unsmooth regions.

Cognitive Virtual Network Embedding Algorithm Based on Weighted Relative Entropy

  • Su, Yuze;Meng, Xiangru;Zhao, Zhiyuan;Li, Zhentao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1845-1865
    • /
    • 2019
  • Current Internet is designed by lots of service providers with different objects and policies which make the direct deployment of radically new architecture and protocols on Internet nearly impossible without reaching a consensus among almost all of them. Network virtualization is proposed to fend off this ossification of Internet architecture and add diversity to the future Internet. As an important part of network virtualization, virtual network embedding (VNE) problem has received more and more attention. In order to solve the problems of large embedding cost, low acceptance ratio (AR) and environmental adaptability in VNE algorithms, cognitive method is introduced to improve the adaptability to the changing environment and a cognitive virtual network embedding algorithm based on weighted relative entropy (WRE-CVNE) is proposed in this paper. At first, the weighted relative entropy (WRE) method is proposed to select the suitable substrate nodes and paths in VNE. In WRE method, the ranking indicators and their weighting coefficients are selected to calculate the node importance and path importance. It is the basic of the WRE-CVNE. In virtual node embedding stage, the WRE method and breadth first search (BFS) algorithm are both used, and the node proximity is introduced into substrate node ranking to achieve the joint topology awareness. Finally, in virtual link embedding stage, the CPU resource balance degree, bandwidth resource balance degree and path hop counts are taken into account. The path importance is calculated based on the WRE method and the suitable substrate path is selected to reduce the resource fragmentation. Simulation results show that the proposed algorithm can significantly improve AR and the long-term average revenue to cost ratio (LTAR/CR) by adjusting the weighting coefficients in VNE stage according to the network environment. We also analyze the impact of weighting coefficient on the performance of the WRE-CVNE. In addition, the adaptability of the WRE-CVNE is researched in three different scenarios and the effectiveness and efficiency of the WRE-CVNE are demonstrated.

Image Edge Detection Algorithm applied Directional Structure Element Weighted Entropy Based on Grayscale Morphology (그레이스케일 형태학 기반 방향성 구조적 요소의 가중치 엔트로피를 적용한 영상에지 검출 알고리즘)

  • Chang, Yu;Cho, JoonHo;Moon, SungRyong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.2
    • /
    • pp.41-46
    • /
    • 2021
  • The method of the edge detection algorithm based on grayscale mathematical morphology has the advantage that image noise can be removed and processed in parallel, and the operation speed is fast. However, the method of detecting the edge of an image using a single structural scale element may be affected by image information. The characteristics of grayscale morphology may be limited to the edge information result of the operation result by repeatedly performing expansion, erosion, opening, and containment operations by repeating structural elements. In this paper, we propose an edge detection algorithm that applies a structural element with strong directionality to noise and then applies weighted entropy to each pixel information in the element. The result of applying the multi-scale structural element applied to the image and the result of applying the directional weighted entropy were compared and analyzed, and the simulation result showed that the proposed algorithm is superior in edge detection.

A NOTE ON THE MAXIMUM ENTROPY WEIGHTING FUNCTION PROBLEM

  • Hong, Dug-Hun;Kim, Kyung-Tae
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.547-552
    • /
    • 2007
  • In this note, we extends some of the results of Liu [Fuzzy Sets and systems 157 (2006) 869-878]. This extension consists of a simple proof involving weighted functions and their preference index. We also give an elementary simple proof of the maximum entropy weighting function problem with a given preference index value without using any advanced theory like variational principles or without using Lagrangian multiplier methods.

Shape Extraction of Near Target Using Opening Operator with Adaptive Structure Element in Infrared hnages (적응적 구조요소를 이용한 열림 연산자에 의한 적외선 영상표적 추출)

  • Kwon, Hyuk-Ju;Bae, Tae-Wuk;Kim, Byoung-Ik;Lee, Sung-Hak;Kim, Young-Choon;Ahn, Sang-Ho;Sohng, Kyu-Ik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9C
    • /
    • pp.546-554
    • /
    • 2011
  • Near targets in the infrared (IR) images have the steady feature for inner region and the transient feature for the boundary region. Based on these features, this paper proposes a new method to extract the fine target shape of near targets in the IR images. First, we detect the boundary region of the candidate targets using the local variance weighted information entropy (WIE) of the original images. And then, a coarse target region can be estimated based on the labeling of the boundary region. For the coarse target region, we use the opening filter with an adaptive structure element to extract the fine target shape. The decision of the adaptive structure element size is optimized for the width information of target boundary by calculating the average WIE in the enlarged windows. The experimental results show that a proposed method has better extraction performance than the previous threshold algorithms.

Estimation for scale parameter of type-I extreme value distribution

  • Choi, Byungjin
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.2
    • /
    • pp.535-545
    • /
    • 2015
  • In a various range of applications including hydrology, the type-I extreme value distribution has been extensively used as a probabilistic model for analyzing extreme events. In this paper, we introduce methods for estimating the scale parameter of the type-I extreme value distribution. A simulation study is performed to compare the estimators in terms of mean-squared error and bias, and the obtained results are provided.