• 제목/요약/키워드: Weighted Information Entropy

검색결과 32건 처리시간 0.02초

Effect of Nonlinear Transformations on Entropy of Hidden Nodes

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • 제10권1호
    • /
    • pp.18-22
    • /
    • 2014
  • Hidden nodes have a key role in the information processing of feed-forward neural networks in which inputs are processed through a series of weighted sums and nonlinear activation functions. In order to understand the role of hidden nodes, we must analyze the effect of the nonlinear activation functions on the weighted sums to hidden nodes. In this paper, we focus on the effect of nonlinear functions in a viewpoint of information theory. Under the assumption that the nonlinear activation function can be approximated piece-wise linearly, we prove that the entropy of weighted sums to hidden nodes decreases after piece-wise linear functions. Therefore, we argue that the nonlinear activation function decreases the uncertainty among hidden nodes. Furthermore, the more the hidden nodes are saturated, the more the entropy of hidden nodes decreases. Based on this result, we can say that, after successful training of feed-forward neural networks, hidden nodes tend not to be in linear regions but to be in saturated regions of activation function with the effect of uncertainty reduction.

Infrared Target Extraction Using Weighted Information Entropy and Adaptive Opening Filter

  • Bae, Tae Wuk;Kim, Hwi Gang;Kim, Young Choon;Ahn, Sang Ho
    • ETRI Journal
    • /
    • 제37권5호
    • /
    • pp.1023-1031
    • /
    • 2015
  • In infrared (IR) images, near targets have a transient distribution at the boundary region, as opposed to a steady one at the inner region. Based on this fact, this paper proposes a novel IR target extraction method that uses both a weighted information entropy (WIE) and an adaptive opening filter to extract near finely shaped targets in IR images. Firstly, the boundary region of a target is detected using a local variance WIE of an original image. Next, a coarse target region is estimated via a labeling process used on the boundary region of the target. From the estimated coarse target region, a fine target shape is extracted by means of an opening filter having an adaptive structure element. The size of the structure element is decided in accordance with the width information of the target boundary and mean WIE values of windows of varying size. Our experimental results show that the proposed method obtains a better extraction performance than existing algorithms.

Computing Semantic Similarity between ECG-Information Concepts Based on an Entropy-Weighted Concept Lattice

  • Wang, Kai;Yang, Shu
    • Journal of Information Processing Systems
    • /
    • 제16권1호
    • /
    • pp.184-200
    • /
    • 2020
  • Similarity searching is a basic issue in information processing because of the large size of formal contexts and their complicated derivation operators. Recently, some researchers have focused on knowledge reduction methods by using granular computing. In this process, suitable information granules are vital to characterizing the quantities of attributes and objects. To address this problem, a novel approach to obtain an entropy-weighted concept lattice with inclusion degree and similarity distance (ECLisd) has been proposed. The approach aims to compute the combined weights by merging the inclusion degree and entropy degree between two concepts. In addition, another method is utilized to measure the hierarchical distance by considering the different degrees of importance of each attribute. Finally, the rationality of the ECLisd is validated via a comparative analysis.

Entropy 기반의 Weighted FCM 알고리즘을 이용한 컬러 영상 Multi-level thresholding (Multi-level thresholding using Entropy-based Weighted FCM Algorithm in Color Image)

  • 오준택;곽현욱;김욱현
    • 대한전자공학회논문지SP
    • /
    • 제42권6호
    • /
    • pp.73-82
    • /
    • 2005
  • 본 논문은 weighted FCM(Fuzzy C-Means) 알고리즘을 적용한 컬러 영상 multi-level thresholding을 제안한다. FCM 알고리즘은 기존의 thresholding 방법들과 달리 최적의 임계치를 결정할 수 있으며 multi-level thresholding으로의 확장이 가능하다. 그러나 공간정보를 포함하고 있지 않기 때문에 잡음 등에 민감하다는 단점을 가진다. 본 논문은 이러한 단점을 해결하기 위해서 이웃 화소들로부터 얻은 entropy 기반의 가중치(weight)를 FCM 알고리즘에 적용함으로써 잡음의 제거가 가능하다. 그리고 각 색상별 성분의 군집 화소들을 기반으로 생성한 코드 영상에 대해서 군집 내부의 거리값을 이용하여 최적의 군집수를 결정한다. 실험에서 제안한 방법이 기존의 방법들보다 잡음에 대해서 강건하며 우수한 분할 성능을 보였다.

Image Deblocking Scheme for JPEG Compressed Images Using an Adaptive-Weighted Bilateral Filter

  • Wang, Liping;Wang, Chengyou;Huang, Wei;Zhou, Xiao
    • Journal of Information Processing Systems
    • /
    • 제12권4호
    • /
    • pp.631-643
    • /
    • 2016
  • Due to the block-based discrete cosine transform (BDCT), JPEG compressed images usually exhibit blocking artifacts. When the bit rates are very low, blocking artifacts will seriously affect the image's visual quality. A bilateral filter has the features for edge-preserving when it smooths images, so we propose an adaptive-weighted bilateral filter based on the features. In this paper, an image-deblocking scheme using this kind of adaptive-weighted bilateral filter is proposed to remove and reduce blocking artifacts. Two parameters of the proposed adaptive-weighted bilateral filter are adaptive-weighted so that it can avoid over-blurring unsmooth regions while eliminating blocking artifacts in smooth regions. This is achieved in two aspects: by using local entropy to control the level of filtering of each single pixel point within the image, and by using an improved blind image quality assessment (BIQA) to control the strength of filtering different images whose blocking artifacts are different. It is proved by our experimental results that our proposed image-deblocking scheme provides good performance on eliminating blocking artifacts and can avoid the over-blurring of unsmooth regions.

Cognitive Virtual Network Embedding Algorithm Based on Weighted Relative Entropy

  • Su, Yuze;Meng, Xiangru;Zhao, Zhiyuan;Li, Zhentao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.1845-1865
    • /
    • 2019
  • Current Internet is designed by lots of service providers with different objects and policies which make the direct deployment of radically new architecture and protocols on Internet nearly impossible without reaching a consensus among almost all of them. Network virtualization is proposed to fend off this ossification of Internet architecture and add diversity to the future Internet. As an important part of network virtualization, virtual network embedding (VNE) problem has received more and more attention. In order to solve the problems of large embedding cost, low acceptance ratio (AR) and environmental adaptability in VNE algorithms, cognitive method is introduced to improve the adaptability to the changing environment and a cognitive virtual network embedding algorithm based on weighted relative entropy (WRE-CVNE) is proposed in this paper. At first, the weighted relative entropy (WRE) method is proposed to select the suitable substrate nodes and paths in VNE. In WRE method, the ranking indicators and their weighting coefficients are selected to calculate the node importance and path importance. It is the basic of the WRE-CVNE. In virtual node embedding stage, the WRE method and breadth first search (BFS) algorithm are both used, and the node proximity is introduced into substrate node ranking to achieve the joint topology awareness. Finally, in virtual link embedding stage, the CPU resource balance degree, bandwidth resource balance degree and path hop counts are taken into account. The path importance is calculated based on the WRE method and the suitable substrate path is selected to reduce the resource fragmentation. Simulation results show that the proposed algorithm can significantly improve AR and the long-term average revenue to cost ratio (LTAR/CR) by adjusting the weighting coefficients in VNE stage according to the network environment. We also analyze the impact of weighting coefficient on the performance of the WRE-CVNE. In addition, the adaptability of the WRE-CVNE is researched in three different scenarios and the effectiveness and efficiency of the WRE-CVNE are demonstrated.

그레이스케일 형태학 기반 방향성 구조적 요소의 가중치 엔트로피를 적용한 영상에지 검출 알고리즘 (Image Edge Detection Algorithm applied Directional Structure Element Weighted Entropy Based on Grayscale Morphology)

  • 상유;조준호;문성룡
    • 융합정보논문지
    • /
    • 제11권2호
    • /
    • pp.41-46
    • /
    • 2021
  • 그레이스케일 수학적 형태학에 기초한 에지 검출 알고리즘의 방법은 영상 노이즈를 제거와 병렬처리 가능하고 연산속도가 빠르다는 장점을 갖고 있다. 그러나 단일 구조적 스케일 요소를 사용하여 영상의 에지 검출을 하는 방법은 영상정보에 따라서 영향을 받을 수 있다. 그레이스케일 형태학의 특성은 구조적원소를 반복하여 확장, 침식, 열림, 담힘 연산을 함으로써 연산 결과 에지정보 결과에 제한적일 수 있다. 본 논문에서 잡음에 강인한 방향성을 갖는 구조적원소를 적용한 후 원소내의 각 픽셀 정보에 가중치 엔트로피를 적용하는 에지 검출 알고리즘을 제안한다. 영상에 적용하는 멀티 스케일 구조적 요소를 적용한 결과와 방향성 가중치 엔트로피를 적용한 연산결과를 비교분석하였으며, 시뮬레이션 결과는 제안된 알고리즘이 에지 검출에서 우수함을 보였다.

A NOTE ON THE MAXIMUM ENTROPY WEIGHTING FUNCTION PROBLEM

  • Hong, Dug-Hun;Kim, Kyung-Tae
    • Journal of applied mathematics & informatics
    • /
    • 제23권1_2호
    • /
    • pp.547-552
    • /
    • 2007
  • In this note, we extends some of the results of Liu [Fuzzy Sets and systems 157 (2006) 869-878]. This extension consists of a simple proof involving weighted functions and their preference index. We also give an elementary simple proof of the maximum entropy weighting function problem with a given preference index value without using any advanced theory like variational principles or without using Lagrangian multiplier methods.

적응적 구조요소를 이용한 열림 연산자에 의한 적외선 영상표적 추출 (Shape Extraction of Near Target Using Opening Operator with Adaptive Structure Element in Infrared hnages)

  • 권혁주;배태욱;김병익;이성학;김영춘;안상호;송규익
    • 한국통신학회논문지
    • /
    • 제36권9C호
    • /
    • pp.546-554
    • /
    • 2011
  • 적외선 영상의 근거리 표적 (near targets)은 표적의 내부영역은 화소 값이 균일하고, 경계 영역은 배경과 인접해 있기 때문에 화소 값 변화가 불균일하다. 이러한 특성에 기초하여 본 논문은 적응적 구조요소 (adaptive structure element)를 이용한 열림 연산자에 의한 적외선 영상 표적 검출 기법을 제안한다 먼저, 국부 분산 가중치 정보 엔트로피 (weighted information entropy, WIE)를 이용하여 후보 표적군의 위치와 경계영역을 추출한 후, 이 경계 영역에 대하여 라벨링 연산을 수행하여 대략의 표적 영역을 검출한다. 이 대략의 표적 영역에 대하여 제한한 적응적 구조 요소를 이용한 열림 연산자를 수행함으로써 정확한 표적 모양을 검출한다. 이 구조 요소는 표적 경계 영역에서 필터창의 가중치 정보 엔트로피의 평균값을 계산함으로써 얻어진 표적 경계 폭에 의한 결정된다. 실험 결과로부터 제안한 방법이 기존의 방법에 비해 추출 성능이 뛰어남을 확인할 수 있었다.

Estimation for scale parameter of type-I extreme value distribution

  • Choi, Byungjin
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권2호
    • /
    • pp.535-545
    • /
    • 2015
  • In a various range of applications including hydrology, the type-I extreme value distribution has been extensively used as a probabilistic model for analyzing extreme events. In this paper, we introduce methods for estimating the scale parameter of the type-I extreme value distribution. A simulation study is performed to compare the estimators in terms of mean-squared error and bias, and the obtained results are provided.