• Title/Summary/Keyword: Weighted Graph

Search Result 128, Processing Time 0.025 seconds

A Graph Embedding Technique for Weighted Graphs Based on LSTM Autoencoders

  • Seo, Minji;Lee, Ki Yong
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1407-1423
    • /
    • 2020
  • A graph is a data structure consisting of nodes and edges between these nodes. Graph embedding is to generate a low dimensional vector for a given graph that best represents the characteristics of the graph. Recently, there have been studies on graph embedding, especially using deep learning techniques. However, until now, most deep learning-based graph embedding techniques have focused on unweighted graphs. Therefore, in this paper, we propose a graph embedding technique for weighted graphs based on long short-term memory (LSTM) autoencoders. Given weighted graphs, we traverse each graph to extract node-weight sequences from the graph. Each node-weight sequence represents a path in the graph consisting of nodes and the weights between these nodes. We then train an LSTM autoencoder on the extracted node-weight sequences and encode each nodeweight sequence into a fixed-length vector using the trained LSTM autoencoder. Finally, for each graph, we collect the encoding vectors obtained from the graph and combine them to generate the final embedding vector for the graph. These embedding vectors can be used to classify weighted graphs or to search for similar weighted graphs. The experiments on synthetic and real datasets show that the proposed method is effective in measuring the similarity between weighted graphs.

MULTIPLICATIVELY WEIGHTED HARARY INDICES OF GRAPH OPERATIONS

  • Pattabiraman, K.
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.1_2
    • /
    • pp.89-100
    • /
    • 2015
  • In this paper, we present exact formulae for the multiplicatively weighted Harary indices of join, tensor product and strong product of graphs in terms of other graph invariants including the Harary index, Zagreb indices and Zagreb coindices. Finally, We apply our result to compute the multiplicatively weighted Harary indices of fan graph, wheel graph and closed fence graph.

Sampling Set Selection Algorithm for Weighted Graph Signals (가중치를 갖는 그래프신호를 위한 샘플링 집합 선택 알고리즘)

  • Kim, Yoon Hak
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.153-160
    • /
    • 2022
  • A greedy algorithm is proposed to select a subset of nodes of a graph for bandlimited graph signals in which each signal value is generated with its weight. Since graph signals are weighted, we seek to minimize the weighted reconstruction error which is formulated by using the QR factorization and derive an analytic result to find iteratively the node minimizing the weighted reconstruction error, leading to a simplified iterative selection process. Experiments show that the proposed method achieves a significant performance gain for graph signals with weights on various graphs as compared with the previous novel selection techniques.

Anonymizing Graphs Against Weight-based Attacks with Community Preservation

  • Li, Yidong;Shen, Hong
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.3
    • /
    • pp.197-209
    • /
    • 2011
  • The increasing popularity of graph data, such as social and online communities, has initiated a prolific research area in knowledge discovery and data mining. As more real-world graphs are released publicly, there is growing concern about privacy breaching for the entities involved. An adversary may reveal identities of individuals in a published graph, with the topological structure and/or basic graph properties as background knowledge. Many previous studies addressing such attacks as identity disclosure, however, concentrate on preserving privacy in simple graph data only. In this paper, we consider the identity disclosure problem in weighted graphs. The motivation is that, a weighted graph can introduce much more unique information than its simple version, which makes the disclosure easier. We first formalize a general anonymization model to deal with weight-based attacks. Then two concrete attacks are discussed based on weight properties of a graph, including the sum and the set of adjacent weights for each vertex. We also propose a complete solution for the weight anonymization problem to prevent a graph from both attacks. In addition, we also investigate the impact of the proposed methods on community detection, a very popular application in the graph mining field. Our approaches are efficient and practical, and have been validated by extensive experiments on both synthetic and real-world datasets.

Real-time Vehicle Tracking Algorithm According to Eigenvector Centrality of Weighted Graph (가중치 그래프의 고유벡터 중심성에 따른 실시간 차량추적 알고리즘)

  • Kim, Seonhyeong;Kim, Sangwook
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.4
    • /
    • pp.517-524
    • /
    • 2020
  • Recently, many researches have been conducted to automatically recognize license plates of vehicles and use the analyzed information to manage stolen vehicles and track the vehicle. However, such a system must eventually be investigated by people through direct monitoring. Therefore, in this paper, the system of tracking a vehicle is implemented by sharing the information analyzed by the vehicle image among cameras registered in the IoT environment to minimize the human intervention. The distance between cameras is indicated by the node and the weight value of the weighted-graph, and the eigenvector centrality is used to select the camera to search. It demonstrates efficiency by comparing the time between analyzing data using weighted graph searching algorithm and analyzing all data stored in databse. Finally, the path of the vehicle is indicated on the map using parsed json data.

Finger Vein Recognition Based on Multi-Orientation Weighted Symmetric Local Graph Structure

  • Dong, Song;Yang, Jucheng;Chen, Yarui;Wang, Chao;Zhang, Xiaoyuan;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4126-4142
    • /
    • 2015
  • Finger vein recognition is a biometric technology using finger veins to authenticate a person, and due to its high degree of uniqueness, liveness, and safety, it is widely used. The traditional Symmetric Local Graph Structure (SLGS) method only considers the relationship between the image pixels as a dominating set, and uses the relevant theories to tap image features. In order to better extract finger vein features, taking into account location information and direction information between the pixels of the image, this paper presents a novel finger vein feature extraction method, Multi-Orientation Weighted Symmetric Local Graph Structure (MOW-SLGS), which assigns weight to each edge according to the positional relationship between the edge and the target pixel. In addition, we use the Extreme Learning Machine (ELM) classifier to train and classify the vein feature extracted by the MOW-SLGS method. Experiments show that the proposed method has better performance than traditional methods.

A Study on Facility Layout Planning Using Graph Theory (그래프 이론을 이용한 설비배치 계획에 관한 연구)

  • Kim, Jae-Gon;Lee, Geun-Cheol;Kim, Yeong-Dae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.2
    • /
    • pp.359-370
    • /
    • 1997
  • We consider a facility layout problem with the objective of minimizing total transportation distance, which is the sum of rectilinear distances between facilities weighted by the frequency of trips between the facilities. It is assumed that facilities are required to have rectangular shapes and there is no empty space between the facilities in the layout. In this study, a graph theoretic heuristic is developed for the problem. In the heuristic, planar graphs are constructed to represent adjacencies between the facilities and then the graphs are converted to block layouts on a continual plane using a layout construction module. (Therefore, each graph corresponds to a layout.) An initial layout is obtained by constructing a maximal weighted planar graph and then the layout is improved by changing the planar graph. A simulated annealing algorithm is used to find a planar graph which gives the best layout. To show the performance of the proposed heuristic, computational experiments are done on randomly generated test problems and results are reported.

  • PDF

A Weighted Frequent Graph Pattern Mining Approach considering Length-Decreasing Support Constraints (길이에 따라 감소하는 빈도수 제한조건을 고려한 가중화 그래프 패턴 마이닝 기법)

  • Yun, Unil;Lee, Gangin
    • Journal of Internet Computing and Services
    • /
    • v.15 no.6
    • /
    • pp.125-132
    • /
    • 2014
  • Since frequent pattern mining was proposed in order to search for hidden, useful pattern information from large-scale databases, various types of mining approaches and applications have been researched. Especially, frequent graph pattern mining was suggested to effectively deal with recent data that have been complicated continually, and a variety of efficient graph mining algorithms have been studied. Graph patterns obtained from graph databases have their own importance and characteristics different from one another according to the elements composing them and their lengths. However, traditional frequent graph pattern mining approaches have the limitations that do not consider such problems. That is, the existing methods consider only one minimum support threshold regardless of the lengths of graph patterns extracted from their mining operations and do not use any of the patterns' weight factors; therefore, a large number of actually useless graph patterns may be generated. Small graph patterns with a few vertices and edges tend to be interesting when their weighted supports are relatively high, while large ones with many elements can be useful even if their weighted supports are relatively low. For this reason, we propose a weight-based frequent graph pattern mining algorithm considering length-decreasing support constraints. Comprehensive experimental results provided in this paper show that the proposed method guarantees more outstanding performance compared to a state-of-the-art graph mining algorithm in terms of pattern generation, runtime, and memory usage.

Map-Building for Path-Planning of an Autonomous Mobile Robot Using a Single Ultrasonic Sensor (단일 초음파센서를 이용한 자율 주행 로봇의 경로 계획용 지도작성)

  • Kim, Young-Geun;Kim, HaK-Il
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.12
    • /
    • pp.577-582
    • /
    • 2002
  • The objective of this paper is to produce a weighted graph map for path-planning of an autonomous mobile robot(AMR) based on the measurements from a single ultrasonic sensor, which are acquired when the autonomous mobile robot explores unknown indoor circumstance. The AMR navigates in th unknown space by following the wall and gathers the range data using the ultrasonic sensor, from which the occupancy grid map is constructed by associating the range data with occupancy certainties. Then, the occupancy grid map is converted to a weighted graph map suing morphological image processing and thinning algorithms. the path- planning for autonomous navigation of a mobile robot can be carried out based on the occupancy grid map. These procedures are implemented and tested using an AMR, and primary results are presented in this paper.