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가중치를 갖는 그래프신호를 위한 
샘플링 집합 선택 알고리즘 

김윤학
*
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요 약

그래프신호가 각각의 가중치를 갖고 발생하는 경우 그래프상의 최적의 샘플링 노드집합을 선택하는 탐욕알

고리즘에 대해 연구한다. 이를 위해 가중치를 반영한 복원오차를 비용함수로 사용하고 여기에 QR 분해를 적

용하여 단순한 형태로 전개한다. 이렇게 도출된 가중치 복원오차를 최소화하기 위해 다양한 수학적 증명을 통

해 반복적으로 노드를 선택할 수 있는 수학적 결과식을 유도한다. 이러한 결과식에 기반하여, 노드를 선택하는 

샘플링 집합 선택알고리즘을 제안한다. 성능평가를 위해 다양한 그래프에서 발생하는 가중치를 갖는 그래프신

호에 적용하여 기존 샘플링 선택 기술대비, 복잡도를 유지하면서 가중치 신호의 복원성능이 우수함을 보인다. 

ABSTRACT

A greedy algorithm is proposed to select a subset of nodes of a graph for bandlimited graph signals in which each 

signal value is generated with its weight. Since graph signals are weighted, we seek to minimize the weighted 

reconstruction error which is formulated by using the QR factorization and derive an analytic result to find iteratively 

the node minimizing the weighted reconstruction error, leading to a simplified iterative selection process. Experiments 

show that the proposed method achieves a significant performance gain for graph signals with weights on various 

graphs as compared with the previous novel selection techniques.
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Ⅰ. Introduction 

Graphs provide a powerful tool to represent 

geometric, irregular structured and high-dimensional 

data generated from emerging applications such as 

neural, energy, transportation, social and sensor 

networks. Specifically, the data samples on the 

network nodes are regarded as graph signals 

defined on the nodes or vertices of the graph and 

the similarity between data samples on the two 
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nodes are described by using the weight of the 

edge connecting them [1, 2].

One crucial task among signal processing 

techniques for such graph signals is the sampling 

set selection, the goal of which is to select a 

subset of vertices of the graph such that the 

original graph signals can be recovered from those 

signals on the sampled nodes by minimizing the 

reconstruction error. To this end, efficient sampling 

set selection techniques have been proposed in 

[3-6] where the worst case of the reconstruction 

error is minimized by taking a greedy selection 

strategy which allows us to choose one node at 

each iteration that minimizes the metric [3-5] and 

the local uncertainty principle can be employed to 

perform a non-uniform sampling which selects 

more samples in areas of lower uncertainty [6]. To 

expediate the selection process, algorithms without 

eigendecomposition were presented in [7, 8]. A 

metric related to signal variation was employed to 

produce a fast selection process [9]. A greedy 

selection algorithm based on the QR factorization 

was recently proposed to yield a competitive 

performance [10].

In this work, we consider the scenario where 

graph signals are generated with weights and seek 

to find the best sampling set that minimizes the 

weighted reconstruction error, not the reconstruction 

error previously regarded as the metric to be 

minimized. This scenario can happen, depending 

upon applications. For instance, in a certain 

application, some nodes of graph can be considered 

to generate more relevant information with respect 

to the application objective. In this case, higher 

weights should be assigned to the signal values on 

those nodes such that the metric with such 

weights should be minimized to achieve better 

performance. Hence, we assume that graph signals 

are bandlimited with weights and formulate the 

weighted reconstruction error as a metric to be 

minimized. We then seek to simplify the metric by 

regarding the nodes with higher weights as those 

with lower noise level. We further manipulate the 

weighted metric by applying the QR factorization 

and exploit the analytic results derived in [10] to 

present a simple criterion which enables an 

iterative selection process. Finally, we evaluate the 

performance of the proposed method through 

experiments and demonstrate a significant 

performance gain of the proposed technique over 

previous sampling set selection methods for various 

graphs with weights.

This paper is organized as follows. The problem 

is formulated in Section II. The proposed algorithm 

is explained and summarized in Section III. The 

performance of the proposed algorithm is 

demonstrated by experiments for various graphs in 

Section IV and the conclusion given in Section V.

Ⅱ. Problem formulation

We assume that a graph G(V,E) is undirected 

and weighted with a set of N vertices denoted by 

V={1,…,N} and edges  where   

indicates an edge weight connecting node i with 

node j. A graph signal   ⋯ 
∈  with   

the signal value on the i-th vertex is defined on V. 

Variation operators such as the combinatorial graph 

Laplacian, the normalized Laplacian or any suitable 

operators can be constructed from the connectivity 

of the graph to describe signal variations caused 

by the irregular structure of the graph [2, 4]. It is 

assumed that the variation operator L, ×  

matrix, has eigenvalues ≤⋯≤   and 

corresponding orthonormal eigenvectors ⋯  . 

Then, the graph signal f can be represented by 

  where  ⋯   is the eigenvector 

matrix and   the graph Fourier 

transform (GFT) of f. If the graph signal f is 

-bandlimited with its GFT entries 

    ∀  , then
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          




                (1)

where   is an ×  column vector with the 

entries of   indexed by  and   a 

submatrix of the eigenvector matrix   with rows 

indexed by V and columns by R, respectively.

For the space of the -bandlimited signals, a 

sampling set S is defined as the uniqueness set if 

the -bandlimited noise-free graph signal f can be 

perfectly reconstructed from the sampled signal fs  

with signal values  ∈  and the uniqueness set 
can be constructed by choosing r independent row 

vectors of : that is, the j-th node is selected 

by choosing the j-th row [4]. Hence, construction 

of the ×  matrix   consisting of r independent 

rows of   indexed by the sampling set S 

produces the sampled signal fs expressed by 

. Then the least square estimate for    

is given by    


   and the 

reconstructed signal   can be given by

    
                   (2)

where 
   



  is the pseudo-inverse 

of   and    for noise-free bandlimited graph 

signals .

In this work, we assume that the graph signal f  

is -bandlimited and the signal value   at the 

i-th node is weighted by   . Then, we seek to 

minimize the weighted reconstruction error denoted 

by 

        





 


              (3)

where  

  is obtained by (2). Instead of 

directly minimizing , we formulate the new 

metric by regarding signal values with higher 

weight as those corrupted by lower noise level: 

specifically, we assume that signal value  ∈  is 
corrupted by an additive uncorrelated noise   with 

zero mean and the variance 
  equal to the 

function 
  which is determined to take values 

inversely proportional to the weight 
. Then we 

obtain the error vector from (2):

                    


 

     (4)

where   is the ×   column vector with entries 

of   indexed by S. Note that the function 
  

can be experimentally determined, depending upon 

the type of graphs.

Hence, the reconstruction mean squared error 

(MSE) is given by

   

 
 


 

  

 
 

 
  

  


 

where (8) follows from the notion that   has 

orthonormal columns and 
  is the 

diagonal covariance matrix with entries 


  

   where the subscript   indicates the 

number of the node selected at the i-th iteration.

 In this work, we conduct a greedy selection 

process by choosing one node at each iteration and 

thus focus on minimizing the intermediate 

reconstruction error at the i-th iteration given by 

  
 


 where   is the set of 

i nodes selected. Note that the selection at the 

(i+1)-th iteration is made over the nodes in the set 

of the remaining vertices in V denoted by 


≡ . More specifically,
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  arg
   ∈

min  
  

  




   

    


   






 


 ×

× 
 

 













 




 





 





 







 


where    is constructed at the (i+1)-th iteration 

by choosing one row from 


:

      
  ⋯                (11)

where 

 denotes the independent row vector 

selected at the i-th iteration from . The greedy 

selection in (9) and (10) are r times repeated with 

  replaced by 
  at the next iteration. In the 

following section, we provide an analytic result to 

select the next node minimizing the metric in (9).

Ⅲ. Sampling set selection algorithm

We first conduct the QR factorization of 

 
    in (9) where   is the 

×   matrix with   orthonormal columns 

  and    the ×   upper 

triangular matrix with columns . 

Specifically, we have

       





    
  


 

  

     

  

where (12) follows from  

  and 

   

 and (13) from the notion that 

  has orthonormal columns. We continue to 

manipulate the metric in (13) by using the analytic 

result in [10] which is given as follows:

 












 



 



× 


         (14)

where ×  is the ×   matrix with entries of all 

zeros,  
⋯ 

   and 

 
 . Then, denoting  

  by 
  

for a simple notation and plugging (14) into (13) 

yields

Thus, we obtain the metric to be minimized at the 

(i+1)-th iteration as follows:

  


 
 




 





 


∝



 





 



where (17) follows since the first term in (16) is 

irrelevant in finding the minimizing row denoted by 

  at the (i+1)-th iteration. Hence, we can find 

the row   that minimizes the reconstruction 

error at the (i+1)-th iteration:

 arg

 ∈ ≠
min 


 





  


Note that the minimizing row   at the first 
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iteration is found with ∥∥


 as follows:

 

 arg

∈ ≠
min 


     ∥∥

If the selected row at the first iteration is the 

-th row, then we have 


  




 
  ∥∥

∥∥


  ∥∥ 

The proposed algorithm is summarized as follows:

Step 1: initialize  ∅

Step 2: compute   and 
   by using (19) 

and (20), respectively.

Step 3:   
 if   is the -th row in .

Step 4: For     to   do

       for each   selected from 



      1) Given     and 
 , compute        

         
⋯ 

   and

           
 .

      2) compute   by (18).

      3)    
 if   is the -th     

       row in 


.

      4) for the selected , compute           

          and   from the QR      

     factorization and (15), respectively.

Step 5: end for

Step 6: Return   

IV. Simulation results

In the experiments, we examine three different 

graphs given below for evaluation of the various 

selection methods:

1) Random sensor graph (RSS) with N=1000

2) Random regular graph (RRG) with each 

vertex connected to six vertices and N=1000

3) Minnesota road network graph (MRNG) with 

N=2642.

For each of three graphs, we generate 30 graph 

realizations with N vertices and compute the 

eigenvector matrix   and GFT   by employing the 

combinatorial Laplacian matrix L as a variation 

operator. We construct uniqueness sampling sets S 

with size r=|S| from 30 to 80 based on three 

different techniques, denoted by efficient sampling 

method (ESM) [4], QR factorization-based method 

(QRM) [10], and our proposed method, respectively. 

We test the case of noisy non-bandlimited signals 

since graph siganls are non-bandlimited or 

approximately bandlimited in a real situation. We 

generate random graph signals from the Gaussian 

joint distribution as follows:

∝exp exp  (21)

where   corresponds to the inverse covariance 

matrix and   is assumed to take a small value 

(=0.01) for the existence of the inverse matrix. We 

assume that graph signals are noise-corrupted by 

an iid additive noise drawn from  . In 

evaluating the selection methods, we compare the 

weighted reconstruction error in (3) which is 

averaged over 100 graph signal values at each 

node. In the experiments, weights   are generated 

from uniform distribution over the interval (0 2) 

and the function 
 





 is used for RSG and 

MRNG and  
 log 


 for RRG where 

  is adjusted for log   ∀ . Graphs 

and their attributes (i.e.,  ) are created from 

the graph signal processing toolbox (GSPBox) for 

Matlab [11].
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Fig. 1 Performance evaluation of different sampling 

methods for RSG by varying sample size with noise 

level   .
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Fig. 2 Performance evaluation of different sampling 

methods for RRG by varying sample size with noise 

level   .

We evaluate the reconstruction performance for 

the case of noisy non-bandlimited graph signals 

with     by varying the sample size |S|=r from 

30 to 80. As seen in Figure 1, 2 and 3, the 

proposed algorithm achieves the better 

reconstruction performance than the other methods 

since ESM and QRM are devised to optimize the 

metric related to the reconstruction error without 

weights.
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Fig. 3 Performance evaluation of different sampling 

methods for MRNG by varying sample size with noise 

level   .

 We also investigate the complexity by examining 

the execution time of the methods in the same 

condition in Figure 4. It can be seen that the 

proposed algorithm runs as fast as QRM while 

maintaining better reconstruction accuracy than 

QRM when graph signals are generated with 

weights. Note that ESM operates much faster than 

the others at the cost of performance degradation.

V. Conclusion

We studied the sampling set selection problem 

when each node generates a signal value with its 

weight. To minimize the weighted reconstruction 

error, we assume that signal values with high 

weights are corrupted by lower noise variance. 

Then, we simplified the reconstruction error based 

on the QR factorization and presented an analytic 

solution which enables a simple iterative selection 

process. We conducted experiments for performance 

evaluation of various sampling methods, resulting in 

a competitive performance of the proposed method. 
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Fig. 4 Complexity evaluation of different sampling 

methods for RSG by varying sample size with noise 

level   . 
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