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ABSTRACT

A greedy algorithm is proposed to select a subset of nodes of a graph for bandlimited graph signals in which each
signal value is generated with its weight. Since graph signals are weighted, we seek to minimize the weighted
reconstruction error which is formulated by using the QR factorization and derive an analytic result to find iteratively
the node minimizing the weighted reconstruction error, leading to a simplified iterative selection process. Experiments
show that the proposed method achieves a significant performance gain for graph signals with weights on various
graphs as compared with the previous novel selection techniques.
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| . Introduction neural, energy, transportation, social and sensor

networks. Specifically, the data samples on the

Graphs provide a powerful tool to represent
geometric, irregular structured and high-dimensional
data generated from emerging applications such as

network nodes are regarded as graph signals
defined on the nodes or vertices of the graph and
the similarity between data samples on the two
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nodes are described by using the weight of the
edge connecting them [1, 2.

One
techniques for such graph signals is the sampling

crucial task among signal processing
set selection, the goal of which is to select a
subset of vertices of the graph such that the
original graph signals can be recovered from those
signals on the sampled nodes by minimizing the
reconstruction error. To this end, efficient sampling
set selection techniques have been proposed in
[3-6] where the worst case of the reconstruction
error is minimized by taking a greedy selection
strategy which allows us to choose one node at
each iteration that minimizes the metric [3-5] and
the local uncertainty principle can be employed to
perform a non-uniform sampling which selects
more samples in areas of lower uncertainty [6]. To
expediate the selection process, algorithms without
eigendecomposition were presented in [7, 8. A
metric related to signal variation was employed to
produce a fast selection process [9]. A greedy
selection algorithm based on the QR factorization
was recently proposed to yield a competitive
performance [10].

In this work, we consider the scenario where
graph signals are generated with weights and seek
to find the best sampling set that minimizes the
weighted reconstruction error, not the reconstruction
error previously regarded as the metric to be
minimized. This scenario can happen, depending
upon applications. For instance, in a certain
application, some nodes of graph can be considered
to generate more relevant information with respect
to the application objective. In this case, higher
weights should be assigned to the signal values on
those nodes such that the metric with such
weights should be minimized to achieve better
performance. Hence, we assume that graph signals
are bandlimited with weights and formulate the
weighted reconstruction error as a metric to be
minimized. We then seek to simplify the metric by
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regarding the nodes with higher weights as those
with lower noise level. We further manipulate the
weighted metric by applying the QR factorization
and exploit the analytic results derived in [10] to
present a simple criterion which enables an
iterative selection process. Finally, we evaluate the
performance of the proposed method through

experiments and  demonstrate a  significant
performance gain of the proposed technique over
previous sampling set selection methods for various
graphs with weights.

This paper is organized as follows. The problem
is formulated in Section II. The proposed algorithm
is explained and summarized in Section III. The
performance of the proposed algorithm is
demonstrated by experiments for various graphs in

Section IV and the conclusion given in Section V.

Il. Problem formulation

We assume that a graph G(V,E) is undirected
and weighted with a set of N vertices denoted by
V=(1,.N} and edges E={i,j.e;;} where e,
indicates an edge weight connecting node 1 with

node j. A graph signal f=I[f, -~ fAl"€RY with f,
the signal value on the i-th vertex is defined on V.
Variation operators such as the combinatorial graph
Laplacian, the normalized Laplacian or any suitable
operators can be constructed from the connectivity
of the graph to describe signal variations caused
by the irregular structure of the graph [2, 4]. It is
assumed that the variation operator L, NXN
DY ESEE)WN and

corresponding orthonormal eigenvectors w,--- wy.

matrix, has eigenvalues

Then, the graph signal f can be represented by
f=Uc where U=[u, - u,]
matrix and ¢= U 'f=U’f the graph Fourier
transform (GFT) of f. If the graph signal f is w
~bandlimited GFT
¢; =0, |)\j\> w, V¥

is the eigenvector

with its entries

then

j>r
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where ¢ is an rX1 column vector with the
entries of ¢ indexed by R=1{l,...r} and Uy a
submatrix of the eigenvector matrix U with rows
indexed by V and columns by R, respectively.

For the space of the w-bandlimited signals, a
sampling set S is defined as the uniqueness set if
the w-bandlimited noise-free graph signal f can be
perfectly reconstructed from the sampled signal fs
with signal values f;,j&S and the uniqueness set
can be constructed by choosing r independent row
vectors of Upg that is, the j—th node is selected
by choosing the j-th row [4]. Hence, construction
of the 7Xr matrix Ug, consisting of r independent
rows of Upg indexed by the sampling set S
produces the sampled signal fs expressed by
fi= Ugep. Then the least square estimate for cp

is given by cp=(UkUsg) Ukfs and the

reconstructed signal f can be given by
7= Uimc, = UypUsnfs 2)

where U&:(Uge U.m)flUb% is the pseudo-inverse
of Ug and f=F for noise-free bandlimited graph
signals f.

In this work, we assume that the graph signal f
is w-bandlimited and the signal value f;, at the
i-th node is weighted by w; > 0. Then, we seek to

minimize the weighted reconstruction error denoted
by MSEy,

N R .
MSE, = 3 wlf, — £ 3)

i=1
where f=[f,,-.fAl” is obtained by (2). Instead of

directly minimizing MSE), we formulate the new

metric by regarding signal values with higher
weight as those corrupted by lower noise level:

specifically, we assume that signal value f,,i€ V is
corrupted by an additive uncorrelated noise n with

zero mean and the variance o equal to the

function g(w?) which is determined to take values
inversely proportional to the weight wf Then we

obtain the error vector from (2):
6:f_f: UVRUS-;E(fS+n.9) —f= UVRU-.S;ZnS (4)

where ng is the S 1 column vector with entries
of n indexed by S. Note that the function g(wQ")
can be experimentally determined, depending upon
the type of graphs.

Hence, the reconstruction mean squared error
(MSE) is given by

MSE=tr| Eee”) (5)
= tr| UypUsg Engn 5 Usp) U, | (6)
= tr| UypUse Cd Usp) "Uis | (7)
=tr[(UL C5'Ug) "] (8)

where (8) follows from the notion that Upg has

orthonormal  columns
diagonal

oty =g(w()) where the subscript (i) indicates the

and Cg¢=Engpl is the

covariance matrix with entries

number of the node selected at the i-th iteration.

In this work, we conduct a greedy selection
process by choosing one node at each iteration and
thus
reconstruction error at the i-th iteration given by
MSE, =tr{(U§}iC’§ilUgﬁ)+] where S, is the set of
i nodes selected. Note that the selection at the
(i+1)-th iteration is made over the nodes in the set
of the in V denoted by
5= (V—.5,). More specifically,

focus on minimizing the intermediate

remaining vertices
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j =arg

: T -1 +
5., :gljg},jes(' t’l‘[( US+1E C’S;+1 U‘S+1E) ]
(9)
S =8+1{hi=0...l8-1. (10)

where Ug g is constructed at the (i+1)-th iteration

by choosing one row from U e

UZ o= [u®- . 0+D)] (11)

S+1

where (u(i))T denotes the independent row vector
selected at the i-th iteration from Upg. The greedy

selection in (9) and (10) are r times repeated with
S replaced by ., at the next iteration. In the

following section, we provide an analytic result to
select the next node minimizing the metric in (9).

lll. Sampling set selection algorithm

We first conduct the QR factorization of
USilE:QHIRHl in (9 where Q! is the
rx (i+1) matrix with i+1 orthonormal columns
and R*' the (i+1)x(i+1)
with  columns

Q5% +1 upper

triangular ~ matrix ST A

Specifically, we have
MSE, ., :tTKQiHRiHCS—:l (Ri+1)T(Qi+1)T)+]
:tr[QHl(RHng:l(R¢+1)T)—1(Qi+1)7] (12)

S — »
. + .

where (12) follows from ((Q’H)T) =@ and

(@) =(@"*)" and (13) from the notion that

Q! has orthonormal columns. We continue to

manipulate the metric in (13) by using the analytic
result in [10] which is given as follows:
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i 1
(Ri) 1 (R ) b
(R*Y) ' = 1d (14)
05 a

where 0,,; is the 1<¢ matrix with entries of all

ZEr0s, S and

b= qlTu(i+1)m qT (i+1) } r
d:qiTJrlu(Hl). Then, denoting R@‘C_lﬁ(Ri)Tby P
for a simple notation and plugging (14) into (13)

yields

CS Oi x1

i+1)—1 _ i+1) 7\ —1
(Pw ) ((R ) ) [lei Q(U)%i+1))

ey

-1

P) b

A -

pI( P! bT<Plf,>71b+ g(w(z,,-ﬂ))
d d

Thus, we obtain the metric to be minimized at the

(15)

(i+1)-th iteration as follows:

MSE, ., =tr[(P:*) 1]

. VIR g(wl.y)
= rl(Py) 1+ ——F—+ C([j” (16)
VIR g(wi.y)
oo —+ jj;” (17)

where (17) follows since the first term in (16) is
irrelevant in finding the minimizing row denoted by

wY* at the (i+1)-th iteration. Hence, we can find

(E+1)*

the row wu that minimizes the reconstruction

error at the (i+1)-th iteration:

bT(P;)71b+ g(w(ZH_l))

u(i+1)*: arg min d2 d2

WVe g d=0
2

(18)

Note that the minimizing row «®* at the first
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Hu(inu as follows:
u

iteration is found with @'=

g(w?n)
d2

* .
uW*=arg  min
wPeUppd=0

),d2: I u® 1 2(19)

If the selected row at the first iteration is the j
-th row, then we have

1\—1 _ _q(w]*) 2 _ 2
(P,) = 2 A= Jupl
1 U 1_
O T B e o)

The proposed algorithm is summarized as follows:
Step 1: initialize S, = @

Step 2: compute w and (P)~' by using (19)
and (20), respectively.

Step 31 S, = {j*} it V" is the j -th row in Uvg
Step 4: For i=1 to r—1 do

for each w¥*? selected from U§CR

1) Given @, R* and (P.)"', compute
_ {qi.l’u(i+1)_._ qiTu('i+1)]T and
d= qi:l:rlu(iﬂ)

2) compute w¢*V* by (18).

3 S, =8+ if wtY s the j-th

TOwW in US_CR.

4) for the selected w®tV"
QLR and (YY) from the QR

factorization and (15), respectively.
Step 5: end for
Step 6: Return §=5,

compute

IV. Simulation results

In the experiments, we examine three different
graphs given below for evaluation of the various
selection methods:

1) Random sensor graph (RSS) with N=1000

2) Random regular graph (RRG) with each

vertex connected to six vertices and N=1000

3) Minnesota road network graph (MRNG) with

N=2642.

For each of three graphs, we generate 30 graph
realizations with N vertices and compute the
eigenvector matrix U and GFT ¢ by employing the
combinatorial Laplacian matrix L as a variation
operator. We construct uniqueness sampling sets S
from 30 to 80 based on three
different techniques, denoted by efficient sampling
method (ESM) [4], QR factorization—based method
(QRM) [10], and our proposed method, respectively.

with size r=|S]

We test the case of noisy non-bandlimited signals

since graph siganls are non-bandlimited or
approximately bandlimited in a real situation. We
generate random graph signals from the Gaussian

joint distribution as follows:

p(f)oc exp(— fTK ' f)=exp(—f1(L+6Df) (21)

where L+06I corresponds to the inverse covariance
matrix and ¢ is assumed to take a small value
(=0.01) for the existence of the inverse matrix. We
assume that graph signals are noise-corrupted by
an iid additive noise drawn from MN(0,0%). In
evaluating the selection methods, we compare the
(3) which is
averaged over 100 graph signal values at each

weighted reconstruction error in

node. In the experiments, weights w, are generated

from uniform distribution over the interval (0 2)

. 1
and the function g(w})=—
w;

1

is used for RSG and

MRNG and g(w?) = for RRG where

 log(w? +a)
a is adjusted for log(w?+a) >0, Vw,. Graphs
and their attributes (.e., L, U,eij) are created from

the graph signal processing toolbox (GSPBox) for
Matlab [11].
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Performance evaluation: Random sensor gra

o
3
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35-

Average weighted reconstruction error
w
\

Fig. 1 Performance evaluation of different sampling
methods for RSG by varying sample size with noise
level 0 =0.1.

Performance evaluation: Random regular gr:

27 | | | |
—O—ESM
181 —-=—aerv
—¥— Proposed method

Average weighted reconstruction error

Fig. 2 Performance evaluation of different sampling
methods for RRG by varying sample size with noise
level 0 =0.1.

We evaluate the reconstruction performance for
the case of noisy non-bandlimited graph signals
with ¢ =0.1 by varying the sample size |S|=r from
30 to 80. As seen in Figure 1, 2 and 3, the
better
reconstruction performance than the other methods
since ESM and QRM are devised to optimize the
metric related to the reconstruction error without

proposed algorithm achieves the
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weights.

Performance evaluation: Minnesota road netv

—O—ESM
—B— QRM™
—¥— Propo:

Average weighted reconstruction error

Fig. 3 Performance evaluation of different sampling
methods for MRNG by varying sample size with noise
level o =0.1.

We also investigate the complexity by examining
the execution time of the methods in the same
condition in Figure 4. It can be seen that the
proposed algorithm runs as fast as QRM while
maintaining better reconstruction accuracy than
QRM when graph signals are generated with
weights. Note that ESM operates much faster than
the others at the cost of performance degradation.

V. Conclusion

We studied the sampling set selection problem
when each node generates a signal value with its
weight. To minimize the weighted reconstruction
error, we assume that signal values with high
weights are corrupted by lower noise variance.
Then, we simplified the reconstruction error based
on the QR factorization and presented an analytic
solution which enables a simple iterative selection
process. We conducted experiments for performance
evaluation of various sampling methods, resulting in
a competitive performance of the proposed method.
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