• 제목/요약/키워드: Weighted Graph

검색결과 128건 처리시간 0.02초

A Graph Embedding Technique for Weighted Graphs Based on LSTM Autoencoders

  • Seo, Minji;Lee, Ki Yong
    • Journal of Information Processing Systems
    • /
    • 제16권6호
    • /
    • pp.1407-1423
    • /
    • 2020
  • A graph is a data structure consisting of nodes and edges between these nodes. Graph embedding is to generate a low dimensional vector for a given graph that best represents the characteristics of the graph. Recently, there have been studies on graph embedding, especially using deep learning techniques. However, until now, most deep learning-based graph embedding techniques have focused on unweighted graphs. Therefore, in this paper, we propose a graph embedding technique for weighted graphs based on long short-term memory (LSTM) autoencoders. Given weighted graphs, we traverse each graph to extract node-weight sequences from the graph. Each node-weight sequence represents a path in the graph consisting of nodes and the weights between these nodes. We then train an LSTM autoencoder on the extracted node-weight sequences and encode each nodeweight sequence into a fixed-length vector using the trained LSTM autoencoder. Finally, for each graph, we collect the encoding vectors obtained from the graph and combine them to generate the final embedding vector for the graph. These embedding vectors can be used to classify weighted graphs or to search for similar weighted graphs. The experiments on synthetic and real datasets show that the proposed method is effective in measuring the similarity between weighted graphs.

MULTIPLICATIVELY WEIGHTED HARARY INDICES OF GRAPH OPERATIONS

  • Pattabiraman, K.
    • Journal of applied mathematics & informatics
    • /
    • 제33권1_2호
    • /
    • pp.89-100
    • /
    • 2015
  • In this paper, we present exact formulae for the multiplicatively weighted Harary indices of join, tensor product and strong product of graphs in terms of other graph invariants including the Harary index, Zagreb indices and Zagreb coindices. Finally, We apply our result to compute the multiplicatively weighted Harary indices of fan graph, wheel graph and closed fence graph.

가중치를 갖는 그래프신호를 위한 샘플링 집합 선택 알고리즘 (Sampling Set Selection Algorithm for Weighted Graph Signals)

  • 김윤학
    • 한국전자통신학회논문지
    • /
    • 제17권1호
    • /
    • pp.153-160
    • /
    • 2022
  • 그래프신호가 각각의 가중치를 갖고 발생하는 경우 그래프상의 최적의 샘플링 노드집합을 선택하는 탐욕알고리즘에 대해 연구한다. 이를 위해 가중치를 반영한 복원오차를 비용함수로 사용하고 여기에 QR 분해를 적용하여 단순한 형태로 전개한다. 이렇게 도출된 가중치 복원오차를 최소화하기 위해 다양한 수학적 증명을 통해 반복적으로 노드를 선택할 수 있는 수학적 결과식을 유도한다. 이러한 결과식에 기반하여, 노드를 선택하는 샘플링 집합 선택알고리즘을 제안한다. 성능평가를 위해 다양한 그래프에서 발생하는 가중치를 갖는 그래프신호에 적용하여 기존 샘플링 선택 기술대비, 복잡도를 유지하면서 가중치 신호의 복원성능이 우수함을 보인다.

Anonymizing Graphs Against Weight-based Attacks with Community Preservation

  • Li, Yidong;Shen, Hong
    • Journal of Computing Science and Engineering
    • /
    • 제5권3호
    • /
    • pp.197-209
    • /
    • 2011
  • The increasing popularity of graph data, such as social and online communities, has initiated a prolific research area in knowledge discovery and data mining. As more real-world graphs are released publicly, there is growing concern about privacy breaching for the entities involved. An adversary may reveal identities of individuals in a published graph, with the topological structure and/or basic graph properties as background knowledge. Many previous studies addressing such attacks as identity disclosure, however, concentrate on preserving privacy in simple graph data only. In this paper, we consider the identity disclosure problem in weighted graphs. The motivation is that, a weighted graph can introduce much more unique information than its simple version, which makes the disclosure easier. We first formalize a general anonymization model to deal with weight-based attacks. Then two concrete attacks are discussed based on weight properties of a graph, including the sum and the set of adjacent weights for each vertex. We also propose a complete solution for the weight anonymization problem to prevent a graph from both attacks. In addition, we also investigate the impact of the proposed methods on community detection, a very popular application in the graph mining field. Our approaches are efficient and practical, and have been validated by extensive experiments on both synthetic and real-world datasets.

가중치 그래프의 고유벡터 중심성에 따른 실시간 차량추적 알고리즘 (Real-time Vehicle Tracking Algorithm According to Eigenvector Centrality of Weighted Graph)

  • 김선형;김상욱
    • 한국멀티미디어학회논문지
    • /
    • 제23권4호
    • /
    • pp.517-524
    • /
    • 2020
  • Recently, many researches have been conducted to automatically recognize license plates of vehicles and use the analyzed information to manage stolen vehicles and track the vehicle. However, such a system must eventually be investigated by people through direct monitoring. Therefore, in this paper, the system of tracking a vehicle is implemented by sharing the information analyzed by the vehicle image among cameras registered in the IoT environment to minimize the human intervention. The distance between cameras is indicated by the node and the weight value of the weighted-graph, and the eigenvector centrality is used to select the camera to search. It demonstrates efficiency by comparing the time between analyzing data using weighted graph searching algorithm and analyzing all data stored in databse. Finally, the path of the vehicle is indicated on the map using parsed json data.

Finger Vein Recognition Based on Multi-Orientation Weighted Symmetric Local Graph Structure

  • Dong, Song;Yang, Jucheng;Chen, Yarui;Wang, Chao;Zhang, Xiaoyuan;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권10호
    • /
    • pp.4126-4142
    • /
    • 2015
  • Finger vein recognition is a biometric technology using finger veins to authenticate a person, and due to its high degree of uniqueness, liveness, and safety, it is widely used. The traditional Symmetric Local Graph Structure (SLGS) method only considers the relationship between the image pixels as a dominating set, and uses the relevant theories to tap image features. In order to better extract finger vein features, taking into account location information and direction information between the pixels of the image, this paper presents a novel finger vein feature extraction method, Multi-Orientation Weighted Symmetric Local Graph Structure (MOW-SLGS), which assigns weight to each edge according to the positional relationship between the edge and the target pixel. In addition, we use the Extreme Learning Machine (ELM) classifier to train and classify the vein feature extracted by the MOW-SLGS method. Experiments show that the proposed method has better performance than traditional methods.

그래프 이론을 이용한 설비배치 계획에 관한 연구 (A Study on Facility Layout Planning Using Graph Theory)

  • 김재곤;이근철;김영대
    • 대한산업공학회지
    • /
    • 제23권2호
    • /
    • pp.359-370
    • /
    • 1997
  • We consider a facility layout problem with the objective of minimizing total transportation distance, which is the sum of rectilinear distances between facilities weighted by the frequency of trips between the facilities. It is assumed that facilities are required to have rectangular shapes and there is no empty space between the facilities in the layout. In this study, a graph theoretic heuristic is developed for the problem. In the heuristic, planar graphs are constructed to represent adjacencies between the facilities and then the graphs are converted to block layouts on a continual plane using a layout construction module. (Therefore, each graph corresponds to a layout.) An initial layout is obtained by constructing a maximal weighted planar graph and then the layout is improved by changing the planar graph. A simulated annealing algorithm is used to find a planar graph which gives the best layout. To show the performance of the proposed heuristic, computational experiments are done on randomly generated test problems and results are reported.

  • PDF

길이에 따라 감소하는 빈도수 제한조건을 고려한 가중화 그래프 패턴 마이닝 기법 (A Weighted Frequent Graph Pattern Mining Approach considering Length-Decreasing Support Constraints)

  • 윤은일;이강인
    • 인터넷정보학회논문지
    • /
    • 제15권6호
    • /
    • pp.125-132
    • /
    • 2014
  • 대규모의 데이터베이스로부터 숨겨진 유용한 패턴 정보를 찾기 위해 빈발 패턴 마이닝이 제안된 이래로, 다양한 종류의 접근 방법들과 어플리케이션들이 연구되어 왔다. 특히, 빈발 그래프 패턴 마이닝은 계속해서 복잡해져 가는 최근의 데이터들을 효과적으로 다루기 위해 제안되었고, 이와 관련한 다양한 효율적인 알고리즘들이 연구되어 왔다. 그래프 데이터베이스로부터 얻을 수 있는 그래프 패턴들은 이를 구성하는 요소들에 따라 다른 중요도를 가지며 길이에 따라 다른 특성을 갖는다. 하지만, 전통적인 빈발 그래프 패턴 마이닝 접근 방법들은 이러한 문제들을 고려할 수 없다는 한계점을 지닌다. 즉, 기존의 방법들은 마이닝 과정에서 추출되는 그래프 패턴들의 길이에 상관없이 오직 하나의 최소 지지도 임계값만을 고려하고 이들의 가중치 요소들을 사용하지 않기 때문에, 실제적으로 쓸모없는 그래프 패턴들이 상당량 생성될 수 있다. 작은 수의 정점과 간선을 갖는 작은 그래프 패턴들은 이들에 대한 가중화 지지도 값이 상대적으로 높을 때 흥미로운 특성을 갖는 경향이 있는 반면, 많은 정점과 간선을 갖는 큰 그래프 패턴들은 비록 가중화 지지도 값이 상대적으로 낮을지라도 흥미로운 특성을 가질 수 있다. 이러한 이유로, 본 논문에서는 길이에 따라 감소하는 지지도 제한조건을 고려한 가중치 기반의 빈발 그래프 패턴 마이닝 알고리즘을 제안한다. 본 논문에서 제공되는 총체적인 실험 결과들은 제안되는 방법이 기존의 최신 그래프 마이닝 알고리즘과 비교하여 패턴 생성, 수행시간, 그리고 메모리 사용량 측면에서 더욱 뛰어난 성능을 보장함을 보인다.

단일 초음파센서를 이용한 자율 주행 로봇의 경로 계획용 지도작성 (Map-Building for Path-Planning of an Autonomous Mobile Robot Using a Single Ultrasonic Sensor)

  • 김영근;김학일
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권12호
    • /
    • pp.577-582
    • /
    • 2002
  • The objective of this paper is to produce a weighted graph map for path-planning of an autonomous mobile robot(AMR) based on the measurements from a single ultrasonic sensor, which are acquired when the autonomous mobile robot explores unknown indoor circumstance. The AMR navigates in th unknown space by following the wall and gathers the range data using the ultrasonic sensor, from which the occupancy grid map is constructed by associating the range data with occupancy certainties. Then, the occupancy grid map is converted to a weighted graph map suing morphological image processing and thinning algorithms. the path- planning for autonomous navigation of a mobile robot can be carried out based on the occupancy grid map. These procedures are implemented and tested using an AMR, and primary results are presented in this paper.