• Title/Summary/Keyword: Weibull Shape Factor

Search Result 44, Processing Time 0.045 seconds

A Study on Statistical Characteristics of Fatigue Life of Carbon Fiber Composite (탄소섬유 복합재 피로수명의 통계적 특성 연구)

  • Joo, Young-Sik;Lee, Won-Jun;Seo, Bo-Hwi;Lim, Seung-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.35-40
    • /
    • 2019
  • The objective of this paper is to identify the fatigue properties of carbon-fiber composite which is widely applied for the development of aircraft structures and obtain data for full-scale fatigue test. The durability and damage tolerance evaluation of composite structures is achieved by fatigue tests and parameters such as fatigue life factor and load enhancement factor. The specimens are made with carbon-fiber/epoxy UD tape and fabric prepreg. Fatigue tests are performed with several stress ratios and lay-up patterns. The Weibull shape parameters are analyzed by Sendeckyj model and individual fatigue lives with Weibull distribution. And the fatigue life factor and load enhancement factor considering reliability are evaluated.

An Accuracy Estimation of AEP Based on Geographic Characteristics and Atmospheric Variations in Northern East Region of Jeju Island (제주 북동부 지역의 지형과 대기변수에 따른 AEP계산의 정확성에 대한 연구)

  • Ko, Jung-Woo;Lee, Byung-Gul
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.3
    • /
    • pp.295-303
    • /
    • 2012
  • Clarify wind energy productivity depends on three factors: the wind probability density function(PDF), the turbine's power curve, and the air density. The wind PDF gives the probability that a variable will take on the wind speed value. Wind shear refers to the change in wind speed with height above ground. The wind speed tends to increase with the height above ground. also, Wind PDF refers to the change with height above ground. Wind analysts typically use the Weibull distribution to characterize the breadth of the distribution of wind speeds. The Weibull distribution has the two-parameter: the scale factor c and the shape factor k. We can use a linear least squares algorithm(or Ln-least method) and moment method to fit a Weibull distribution to measured wind speed data which data was located same site and different height. In this study, find that the scale factor is related to the average wind speed than the shape factor. and also different types of terrain are characterized by different the scale factor slop with height above ground. The gross turbine power output (before accounting for losses) was caculated the power curve whose corresponding air density is closest to the air density. and air desity was choose two way. one is the pressure of the International Standard Atmosphere up to an elevation, the other is the measured air pressure and temperature to calculate the air density. and then each power output was compared.

Evaluation of Partial Safety Factors for Tetrapod Armor Blocks Depending on the Shape Parameter of Extreme Wave Height Distributions (극치파고분포의 형상 모수에 따른 Tetrapod 피복블록의 부분안전계수 산정)

  • Kim, Seung-Woo;Suh, Kyung-Duck;Lee, Dong-Young;Jun, Ki-Cheon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.59-69
    • /
    • 2012
  • Probabilistic design is required to effectively consider the coastal environment of great uncertainty. However, designers who are familiar with the deterministic design method prefer a method which is similar to the existing method but is based on the probabilistic concept. Therefore, the partial safety factor method has been adopted as a new design method over the world. In Korea, Tetrapod is widely used for armoring rubble mound breakwaters. Even though the partial safety factor method developed in the United States and Europe covers Tetrapods, the limited wave and structure conditions in its development make the engineers hesitate about its use in practical breakwater design. In this study, partial safety factors for Tetrapod armor blocks have been developed by analyzing 116 breakwater cross-sections and wave conditions in 16 trade harbors and 15 coastal harbors with the FORM and optimal code calibration approach. Especially, partial safety factors have been proposed depending on the shape parameter of the Weibull extreme wave height distribution. For other types of extreme distributions, it is possible to apply the proposed partial safety factors using the relationship between skewness coefficient and shape parameter. Finally, the proposed partial safety factors have been applied to existing structures to show that they better satisfy the target reliability of the structures than previous partial safety factors.

An Accelerated Life Test for Burnout of Tungsten Filament of Incandescent Lamp (텅스텐 백열전구의 필라멘트 단선에 대한 가속수명시험)

  • 이재국;김진우;신재철;김명수
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.07a
    • /
    • pp.129-137
    • /
    • 2004
  • This paper presents an accelerated life test for burnout of tungsten filament of incandescent lamp. From failure analyses of field samples, it is shown that their root causes are local heating or hot sports in the filament caused by tungsten evaporation and wire sag. Finite element analysis is performed to evaluate the effect of vibration and impact for burnout, but any points of stress concentration or structural weakness are not found in the sample. To estimate the burnout life of lamp, an accelerated life test is planned by using quality function deployment and fractional factorial design, where voltage, vibration, and temperature are selected as accelerating variables. We assumed that Weibull lifetime distribution and a generalized linear model of life-stress relationship hold through goodness of fit test and test for common shape parameter of the distribution. Using accelerated life testing software, we estimated the common shape parameter of Weibull distribution, life-stress relationship, and accelerating factor.

  • PDF

Electrical Discharge Machining of Alumina Ceramic Matrix Composites Containing Electro-conductive Titanium Carbide as a Second Phase (도전성 탄화티타늄 이차상을 포함하는 산화알루니늄기 세라믹 복합체의 방전가공)

  • 윤존도;왕덕현;안영철;고철호
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.10
    • /
    • pp.1092-1098
    • /
    • 1997
  • Electrical discharge machining (EDM) was attempted on a ceramic matrix composite containing non-conductive alumina as a matrix and conductive titania as a second phase, and was found successful. As the current or duty factor increased, the material removal rate (MRR) increased and the surface roughness also increased. The EDMed surface was covered with a number of craters of a circular shape having 100-200 microns of diameter. The melting and evaporation was suggested for the EDM mechanism. The bending strength decreased 44% after EDM, but the Weibull modulus increased more than twice. Combination of EDM and barre이 polishing resulted in the maintenance of the bending strength level. Temperature distribution near a spark in the sample was computer-simulated by use of finite element method, and was found to have similar shape to the one which the observed craters have.

  • PDF

Analysis of flexural fatigue failure of concrete made with 100% coarse recycled and natural aggregates

  • Murali, G.;Indhumathi, T.;Karthikeyan, K.;Ramkumar, V.R.
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.291-298
    • /
    • 2018
  • In this study, the flexural fatigue performance of concrete beams made with 100% Coarse Recycled Concrete Aggregates (RCA) and 100% Coarse Natural Aggregates (NA) were statistically commanded. For this purpose, the experimental fatigue test results of earlier researcher were investigated using two parameter Weibull distribution. The shape and scale parameters of Weibull distribution function was evaluated using seven numerical methods namely, Graphical method (GM), Least-Squares (LS) regression of Y on X, Least-Squares (LS) regression of X on Y, Empherical Method of Lysen (EML), Mean Standard Deviation Method (MSDM), Energy Pattern Factor Method (EPFM) and Method of Moments (MOM). The average of Weibull parameters was used to incorporate survival probability into stress (S)-fatigue life (N) relationships. Based on the Weibull theory, as single and double logarithm fatigue equations for RCA and NA under different survival probability were provided. The results revealed that, by considering 0.9 level survival probability, the theoretical stress level corresponding to a fatigue failure number equal to one million cycle, decreases by 8.77% (calculated using single-logarithm fatigue equation) and 6.62% (calculated using double logarithm fatigue equation) in RCA when compared to NA concrete.

Effect of Crack Orientation on Spatial Randomness of Fatigue Crack Growth Rate in FSWed 7075-T651 Aluminum Alloy Joints (마찰교반용접된 7075-T651 알루미늄 합금 용접부의 피로균열전파율의 공간적 변동성에 미치는 균열 방향의 영향)

  • Jeong, Yeui-Han;Kim, Seon-Jin
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.91-98
    • /
    • 2014
  • In this investigation, the effect of crack orientation on spatial randomness of fatigue crack growth rate (FCGR) in friction stir welded (FSWed) 7075-T651 aluminum alloy joints has been statistically analyzed by Weibull distribution. The fatigue crack growth tests are conducted under three different constant stress intensity factor range (SIFR) control at room temperature with R = 0.1 and frequency 10Hz on compact tension (CT) specimen machined at base metal (BM) and weld metal (WM). The experimental fatigue crack growth rate data were obtained for two types of specimens having LT and TL orientations. LT specimens both base metal and weld metal showed higher fatigue crack growth rate as compared to TL specimens. In the lower SIFR region, FCGR were found to be almost 3 times higher in higher SIFR region. The shape parameter of Weibull both LT and TL orientation for FCGR was increased with increasing SIFR, the scale parameter was also increased with increasing SIFR. The smallest value of the shape parameter was shown in weld metal specimens having LT orientation at lower SIFR region.

Non-Gaussian feature of fluctuating wind pressures on rectangular high-rise buildings with different side ratios

  • Jia-hui Yuan;Shui-fu Chen;Yi Liu
    • Wind and Structures
    • /
    • v.37 no.3
    • /
    • pp.211-227
    • /
    • 2023
  • To investigate the non-Gaussian feature of fluctuating wind pressures on rectangular high-rise buildings, wind tunnel tests were conducted on scale models with side ratios ranging from 1/9~9 in an open exposure for various wind directions. The high-order statistical moments, time histories, probability density distributions, and peak factors of pressure fluctuations are analyzed. The mixed normal-Weibull distribution, Gumbel-Weibull distribution, and lognormal-Weibull distribution are adopted to fit the probability density distribution of different non-Gaussian wind pressures. Zones of Gaussian and non-Gaussian are classified for rectangular buildings with various side ratios. The results indicate that on the side wall, the non-Gaussian wind pressures are related to the distance from the leading edge. Apart from the non-Gaussianity in the separated flow regions noted by some literature, wind pressures behind the area where reattachment happens present non-Gaussian nature as well. There is a new probability density distribution type of non-Gaussian wind pressure which has both long positive and negative tail found behind the reattachment regions. The correlation coefficient of wind pressures is proved to reflect the non-Gaussianity and a new method to estimate the mean reattachment length of rectangular high-rise building side wall is proposed by evaluating the correlation coefficient. For rectangular high-rise buildings, the mean reattachment length calculated by the correlation coefficient method along the height changes in a parabolic shape. Distributions of Gaussian and non-Gaussian wind pressures vary with side ratios. It is inappropriate to estimate the extreme loads of wind pressures using a fixed peak factor. The trend of the peak factor with side ratios on different walls is given.

Prediction of Wind Shear Exponent in Complex Terrain (복잡지형에서의 Wind Shear Exponent 예측)

  • Kim, Hyeon-Gi;Kim, Byeong-Min;Kim, Jin-Han;Paek, In-Su;Yoo, Neung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.87-94
    • /
    • 2012
  • In this study, we found a relationship between wind shear exponent, ${\alpha}$, and a few factors such as the wind speed, $V$, ruggedness index($RIX$), and the Weibull shape parameter, $k$ of sites in complex terrain in Korea. Wind shear exponents in main wind directions were calculated using wind speed data measured for one year from various heights of eleven meteorological masts in Gangwon province. It was found from the analysis that the reciprocal of the wind shear exponent can be expressed by an exponentially decaying function with respect to a multiple of $V$, $RIX$ and $k$. This result is considered useful to be used to characterize wind characteristics of specific sites in complex terrain in Korea with limited information.

An Accelerated Life Test for Burnout of Tungsten Filament of Incandescent Lamp (텅스텐 백열전구의 필라멘트 단선에 대한 가속수명시험)

  • Kim Jin-Woo;Shin Jae-Chul;Kim Myung-Soo;Lee Jae-Kook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.921-929
    • /
    • 2005
  • This paper presents an accelerated life test for burnout of tungsten filament of incandescent lamp. From failure analyses of field samples, it is shown that their root causes are local heating or hot spots in the filament caused by tungsten evaporation and wire sag. Finite element analysis is performed to evaluate the effect of vibration and impact for burnout, but any points of stress concentration or structural weakness are not found in the sample. To estimate the burnout life of lamp, an accelerated life test is planned by using quality function deployment and fractional factorial design, where voltage, vibration, and temperature are selected as accelerating variables. We assumed that Weibull lifetime distribution and a generalized linear model of life-stress relationship hold through goodness of fit test and test for common shape parameter of the distribution. Using accelerated life testing software, we estimated the common shape parameter of Weibull distribution, life-stress relationship, and accelerating factor.