• 제목/요약/키워드: Web-based learning

검색결과 1,328건 처리시간 0.029초

전통문화 콘텐츠 표준체계를 활용한 자동 텍스트 분류 시스템 (A System for Automatic Classification of Traditional Culture Texts)

  • 허윤아;이동엽;김규경;유원희;임희석
    • 한국융합학회논문지
    • /
    • 제8권12호
    • /
    • pp.39-47
    • /
    • 2017
  • 한국 문화의 역사, 전통과 관련된 디지털 웹 문서가 증가하게 되었다. 하지만 창작자 또는 전통 문화와 관련된 소재를 찾는 사용자들은 정보를 검색해도 결과가 충분하지 않았으며 원하는 정보를 얻지 못하는 경우가 나타나고 있다. 이런 효과적인 정보를 접하기 위해서는 문서 분류가 필요하다. 과거에 문서 분류는 작업자가 수작업으로 문서 분류하여 시간과 비용이 많이 소비하는 어려움이 있었지만, 최근 기계학습 기반으로 한 자동 문서 분류를 통해 효율적인 문서 분류가 이루어진다. 이에 본 논문은 전통문화 콘텐츠를 체계적인 분류체계로 구성한 한민족정보문화마당 데이터를 기반으로 전통문화 콘텐츠 자동 텍스트 분류 모델을 개발한다. 본 연구는 한민족정보문화마당 텍스트 데이터에 대해 단어 빈도수를 추출하기 위해 TF-IDF모델, Bag-of-Words 모델, TF-IDF/Bag-of-Words를 결합한 모델을 적용하여 각각 SVM 분류 알고리즘을 사용하여 전통문화 콘텐츠 자동 텍스트 분류 모델을 개발하여 성능평가를 확인하였다.

자연어 처리 모델을 활용한 블록 코드 생성 및 추천 모델 개발 (Development of Block-based Code Generation and Recommendation Model Using Natural Language Processing Model)

  • 전인성;송기상
    • 정보교육학회논문지
    • /
    • 제26권3호
    • /
    • pp.197-207
    • /
    • 2022
  • 본 논문에서는 코딩 학습 중 학습자의 인지 부하 감소를 목적으로 자연어 처리 모델을 이용하여 전이학습 및 미세조정을 통해 블록 프로그래밍 환경에서 이미 이루어진 학습자의 블록을 학습하여 학습자에게 다음 단계에서 선택 가능한 블록을 생성하고 추천해 주는 머신러닝 기반 블록 코드 생성 및 추천 모델을 개발하였다. 모델 개발을 위해 훈련용 데이터셋은 블록 프로그래밍 언어인 '엔트리' 사이트의 인기 프로젝트 50개의 블록 코드를 전처리하여 제작하였으며, 훈련 데이터셋과 검증 데이터셋 및 테스트 데이터셋으로 나누어 LSTM, Seq2Seq, GPT-2 모델을 기반으로 블록 코드를 생성하는 모델을 개발하였다. 개발된 모델의 성능 평가 결과, GPT-2가 LSTM과 Seq2Seq 모델보다 문장의 유사도를 측정하는 BLEU와 ROUGE 지표에서 더 높은 성능을 보였다. GPT-2 모델을 통해 실제 생성된 데이터를 확인한 결과 블록의 개수가 1개 또는 17개인 경우를 제외하면 BLEU와 ROUGE 점수에서 비교적 유사한 성능을 내는 것을 알 수 있었다.

고교 생물의 오버헤드 프로젝터용 필름 제작 및 전달 매체로서의 CD-ROM과 홈페이지의 설계 (Development of Overhead Projector Films, CD-ROM, and Bio-Cosmos Home Page as Teaching Resources for High School Biology)

  • 송방호;신연욱;최미숙;박창보;안나영;강재석;김정현;서혜애;권덕기;손종경;정화숙;양홍준;박성호
    • 한국과학교육학회지
    • /
    • 제19권3호
    • /
    • pp.428-440
    • /
    • 1999
  • 고등학교 생물교육의 강의 및 학습의 효율증진을 위한 영상매체로써 오버헤드 프로젝터 필름(OHP)을 제작하였으며 이의 전달매체로써 CD-ROM및 웹용 홈페이지를 설계하였다. 본 필름은 제6차 교육과정에 의해 개정된 공통과학 및 생물교과서에 수록된 내용을 총 망라하는 방향에서 천연색으로 제작하였으며 도안의 선명도, 수려성, 청정성, 색상, 명암, 인지도 등에서 내용의 질적 우월성을 시도하였고 교수 학생내용 상호간의 관련성을 감안하여 학습항진효과를 극대화하는 측면에서 설계되고 제작되었다. 제6차 교육 과정에 의해 개정된 공통과학 및 생물 교과서 7 종에 수록된 내용을 총 망라하는 방향에서 교재를 분석한 후 가장 다빈도로 출현하는 내용을 우선적으로 제작하였다. CD-ROM은 로고(logo), 초기 메인(main), 학습목록, 내용, 종료 등의 화면으로 구성되어 있고 초기 메인 화면은 공통과학, 생물I, 생물II, 교과서에 수록된 단원의 내용(장)목록을 제시한 후 내용세부 문항, 실제내용화면으로 하이퍼링크 시켰다. 내용화면은 교과서 내용의 요약, 그림 및 사진과 그 해설, 실험과정 및 결과의 요약, 표에 의한 내용의 정리 등 4가지 형식으로 제작된 필름 화면이 우선적으로 수록되어 있으나, 비디오 영상수취(video capture)에 의한 화면이나 인쇄 버턴, 자료의 설명 또는 해설, 용어 해설 등의 버턴과 연결시킨 경우도 있다. OHP 파일은 제작시 포토샵(Adobe Photoshop), 일러스터레이터(Adobe Illustrator), 클레리스 오피스(Claris Office)를, CD-ROM은 MM 디렉터(Macromedia Director)를 웹용 홈페이지는 html 에디터(editor)를 주된 소프트웨어로 사용하였다. OHP파일은 스케닝, 그림, 배경, 문자의 입력, 그림의 수식, PICT 또는 PSD 파일로의 저장, JPG 파일로의 변환 등의 순서로 진행되었다. 공통과학 14점, 생물I 80점, 생물II 142점, 총 236점이 제작되었으며 이들의 전달매체로써 CD-ROM 및 웹 홈페이지를 제작하여 이들을 이미 공개된 중학생물과 동일한 주소 즉 http://gic.kyungpook.ac.kr/biocosmos에 공개하였다.

  • PDF

선택적 자질 차원 축소를 이용한 최적의 지도적 LSA 방법 (Optimal supervised LSA method using selective feature dimension reduction)

  • 김정호;김명규;차명훈;인주호;채수환
    • 감성과학
    • /
    • 제13권1호
    • /
    • pp.47-60
    • /
    • 2010
  • 기존 웹 페이지 자동분류 연구는 일반적으로 학습 기반인 kNN(k-Nearest Neighbor), SVM(Support Vector Machine)과 통계 기반인 Bayesian classifier, NNA(Neural Network Algorithm)등 여러 종류의 분류작업에서 입증된 분류 기법을 사용하여 웹 페이지를 분류하였다. 하지만 인터넷 상의 방대한 양의 웹 페이지와 각 페이지로부터 나오는 많은 양의 자질들을 처리하기에는 공간적, 시간적 문제에 직면하게 된다. 그리고 분류 대상을 표현하기 위해 흔히 사용하는 단일(uni-gram) 자질 기반에서는 자질들 간의 관계 분석을 통해 자질에 정확한 의미를 부여하기 힘들다. 특히 본 논문의 분류 대상인 한글 웹 페이지의 자질인 한글 단어는 중의적인 의미를 가지는 경우가 많기 때문에 이러한 중의성이 분류 작업에 많은 영향을 미칠 수 있다. 잠재적 의미 분석 LSA(Latent Semantic Analysis) 분류기법은 선형 기법인 특이치 분해 SVD(Singular Value Decomposition)을 통해 행렬의 분해 및 차원 축소(dimension reduction)를 수행하여 대용량 데이터 집합의 분류를 효율적으로 수행하고, 또한 차원 축소를 통해 새로운 의미공간을 생성하여 자질들의 중의적 의미를 분석할 수 있으며 이 새로운 의미공간상에 분류 대상을 표현함으로써 분류 대상의 잠재적 의미를 분석할 수 있다. 하지만 LSA의 차원 축소는 전체 데이터의 표현 정도만을 고려할 뿐 분류하고자 하는 범주를 고려하지 않으며 또한 서로 다른 범주 간의 차별성을 고려하지 않기 때문에 축소된 차원 상에서 분류 시 서로 다른 범주 데이터간의 모호한 경계로 인해 안정된 분류 성능을 나타내지 못한다. 이에 본 논문은 새로운 의미공간(semantic space) 상에서 서로 다른 범주사이의 명확한 구분을 위한 특별한 차원 선택을 수행하여 최적의 차원 선택과 안정된 분류성능을 보이는 최적의 지도적 LSA을 소개한다. 제안한 지도적 LSA 방법은 기본 LSA 및 다른 지도적 LSA 방법들에 비해 저 차원 상에서 안정되고 더 높은 성능을 보였다. 또한 추가로 자질 생성 및 선택 시 불용어의 제거와 자질에 대한 가중치를 통계적인 학습을 통해 얻음으로써 더 높은 학습효과를 유도하였다.

  • PDF

사전과 말뭉치를 이용한 한국어 단어 중의성 해소 (Korean Word Sense Disambiguation using Dictionary and Corpus)

  • 정한조;박병화
    • 지능정보연구
    • /
    • 제21권1호
    • /
    • pp.1-13
    • /
    • 2015
  • 빅데이터 및 오피니언 마이닝 분야가 대두됨에 따라 정보 검색/추출, 특히 비정형 데이터에서의 정보 검색/추출 기술의 중요성이 나날이 부각되어지고 있다. 또한 정보 검색 분야에서는 이용자의 의도에 맞는 결과를 제공할 수 있는 검색엔진의 성능향상을 위한 다양한 연구들이 진행되고 있다. 이러한 정보 검색/추출 분야에서 자연어처리 기술은 비정형 데이터 분석/처리 분야에서 중요한 기술이고, 자연어처리에 있어서 하나의 단어가 여러개의 모호한 의미를 가질 수 있는 단어 중의성 문제는 자연어처리의 성능을 향상시키기 위해 우선적으로 해결해야하는 문제점들의 하나이다. 본 연구는 단어 중의성 해소 방법에 사용될 수 있는 말뭉치를 많은 시간과 노력이 요구되는 수동적인 방법이 아닌, 사전들의 예제를 활용하여 자동적으로 생성할 수 있는 방법을 소개한다. 즉, 기존의 수동적인 방법으로 의미 태깅된 세종말뭉치에 표준국어대사전의 예제를 자동적으로 태깅하여 결합한 말뭉치를 사용한 단어 중의성 해소 방법을 소개한다. 표준국어대사전에서 단어 중의성 해소의 주요 대상인 전체 명사 (265,655개) 중에 중의성 해소의 대상이 되는 중의어 (29,868개)의 각 센스 (93,522개)와 연관된 속담, 용례 문장 (56,914개)들을 결합 말뭉치에 추가하였다. 품사 및 센스가 같이 태깅된 세종말뭉치의 약 79만개의 문장과 표준국어대사전의 약 5.7만개의 문장을 각각 또는 병합하여 교차검증을 사용하여 실험을 진행하였다. 실험 결과는 결합 말뭉치를 사용하였을 때 정확도와 재현율에 있어서 향상된 결과가 발견되었다. 본 연구의 결과는 인터넷 검색엔진 등의 검색결과의 성능향상과 오피니언 마이닝, 텍스트 마이닝과 관련한 자연어 분석/처리에 있어서 문장의 내용을 보다 명확히 파악하는데 도움을 줄 수 있을 것으로 기대되어진다.

개념 망 구조를 기반으로 한 문항 관리 시스템의 설계 및 구현 (Design and Implementation of a Question Management System based on a Concept Lattice)

  • 김미혜
    • 한국콘텐츠학회논문지
    • /
    • 제8권11호
    • /
    • pp.412-425
    • /
    • 2008
  • 이-러닝을 통한 교육에 있어 학습자의 학업 성취도를 향상시킬 수 있는 중요한 요인 중의 하나는 다양한 평가문항을 제공하여 학습자가 원하는 주제의 문제들을 용이하게 검색하여 학습할 수 있도록 지원하는 것이다. 그러나 평가문항을 위한 시스템은 주로 구문해석에 기반 한 키워드 검색과 영역별 단원 중심의 계층적인 분류체계에만 의존하고 있어 영역별 연관 관계에 의한 통합된 유형의 문항 검색에는 어려움을 지닌다. 본 논문에서는 C언어 프로그래밍 학습을 위한 문항을 웹상에서 쉽게 관리하고 유지할 수 있는 더불어 관리된 문항들을 효과적으로 검색하여 활용할 수 있는 문항관리 및 검색 시스템을 설계하고 구현 하였다. 제안된 문항 검색 시스템은 사용자 질의가 가지는 의미로부터 문항간의 개념적 연관 관계에 의한 검색을 가능하게 함으로써 단일 주제의 문항뿐만 아니라 영역별 연관 관계에 의한 통합된 유형의 문항들을 편리하게 검색하여 학습에 활용할 수 있도록 하였다. 따라서 제안된 시스템은 교과의 기본적인 원리, 개념의 이해뿐만 아니라 종합적인 지식 활용 및 문제 해결 능력 향상을 지원하는 시스템으로 기대된다.

속성선택방법과 워드임베딩 및 BOW (Bag-of-Words)를 결합한 오피니언 마이닝 성과에 관한 연구 (Investigating Opinion Mining Performance by Combining Feature Selection Methods with Word Embedding and BOW (Bag-of-Words))

  • 어균선;이건창
    • 디지털융복합연구
    • /
    • 제17권2호
    • /
    • pp.163-170
    • /
    • 2019
  • 과거 10년은 웹의 발달로 인한 데이터가 폭발적으로 생성되었다. 데이터마이닝에서는 대용량의 데이터에서 무의미한 데이터를 구분하고 가치 있는 데이터를 추출하는 단계가 중요한 부분을 차지한다. 본 연구는 감성분석을 위한 재표현 방법과 속성선택 방법을 적용한 오피니언 마이닝 모델을 제안한다. 본 연구에서 사용한 재표현 방법은 백 오즈 워즈(Bag-of-words)와 Word embedding to vector(Word2vec)이다. 속성선택(Feature selection) 방법은 상관관계 기반 속성선택(Correlation based feature selection), 정보획득 속성선택(Information gain)을 사용했다. 본 연구에서 사용한 분류기는 로지스틱 회귀분석(Logistic regression), 인공신경망(Neural network), 나이브 베이지안 네트워크(naive Bayesian network), 랜덤포레스트(Random forest), 랜덤서브스페이스(Random subspace), 스태킹(Stacking)이다. 실증분석 결과, electronics, kitchen 데이터 셋에서는 백 오즈 워즈의 정보획득 속성선택의 로지스틱 회귀분석과 스태킹이 높은 성능을 나타냄을 확인했다. laptop, restaurant 데이터 셋은 Word2vec의 정보획득 속성선택을 적용한 랜덤포레스트가 가장 높은 성능을 나타내는 조합이라는 것을 확인했다. 다음과 같은 결과는 오피니언 마이닝 모델 구축에 있어서 모델의 성능을 향상시킬 수 있음을 나타낸다.

지자체 사이버 공간 안전을 위한 금융사기 탐지 텍스트 마이닝 방법 (Financial Fraud Detection using Text Mining Analysis against Municipal Cybercriminality)

  • 최석재;이중원;권오병
    • 지능정보연구
    • /
    • 제23권3호
    • /
    • pp.119-138
    • /
    • 2017
  • 최근 SNS는 개인의 의사소통뿐 아니라 마케팅의 중요한 채널로도 자리매김하고 있다. 그러나 사이버 범죄 역시 정보와 통신 기술의 발달에 따라 진화하여 불법 광고가 SNS에 다량으로 배포되고 있다. 그 결과 개인정보를 빼앗기거나 금전적인 손해가 빈번하게 일어난다. 본 연구에서는 SNS로 전달되는 홍보글인 비정형 데이터를 분석하여 어떤 글이 금융사기(예: 불법 대부업 및 불법 방문판매)와 관련된 글인지를 분석하는 방법론을 제안하였다. 불법 홍보글 학습 데이터를 만드는 과정과, 데이터의 특성을 고려하여 입력 데이터를 구성하는 방안, 그리고 판별 알고리즘의 선택과 추출할 정보 대상의 선정 등이 프레임워크의 주요 구성 요소이다. 본 연구의 방법은 실제로 모 지방자치단체의 금융사기 방지 프로그램의 파일럿 테스트에 활용되었으며, 실제 데이터를 가지고 분석한 결과 금융사기 글을 판정하는 정확도가 사람들에 의하여 판정하는 것이나 키워드 추출법(Term Frequency), MLE 등에 비하여 월등함을 검증하였다.

미국 프로농구(NBA)의 플레이오프 진출에 영향을 미치는 주요 변수 예측: 3점과 턴오버 속성을 중심으로 (Prediction of Key Variables Affecting NBA Playoffs Advancement: Focusing on 3 Points and Turnover Features)

  • 안세환;김영민
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.263-286
    • /
    • 2022
  • 본 연구는 웹 크롤링을 이용하여 1990년부터 2022년까지 총 32개년에 해당하는 NBA 통계 정보를 획득하고, 탐색적 데이터 분석을 통해 관심 변수를 관찰하고 관련된 파생변수를 생성한다. 입력 데이터에 대한 정제 과정을 거쳐 무의미한 변수들을 제거하고, 남은 변수에 대한 상관관계 분석, t 검정 및 분산분석을 수행하였다. 관심 변수에 대해 플레이오프 진출/미진출 그룹 간 평균의 차이를 검정하였고, 이를 보완하기 위해 순위를 기준으로 하는 3개 집단(상위/중위/하위) 간 평균 차이를 재확인하였다. 입력 데이터 중 올해 시즌 데이터만을 테스트 세트로 활용하였고, 모델 훈련을 위해서는 훈련 세트와 검증 세트를 분할하여 5-fold 교차검증을 수행하였다. 교차검증 결과와 시험 세트를 이용한 최종 분석 결과를 비교하여 성능 지표에서 차이가 없음을 확인함으로써 과적합 문제를 해결하였다. 원시 데이터의 품질 수준이 높고, 통계적 가정을 만족하기 때문에 적은 수준의 데이터 세트임에도 불구하고 대부분 모델에서 좋은 결과를 나타냈다. 본 연구는 단순히 머신러닝을 이용하여 NBA의 경기 결과를 예측하거나 플레이오프 진출 여부만을 분류하는 것에서 그치지 않고, 입력 특성의 중요도를 파악하여 높은 중요도를 갖는 주요 변수에 본 연구의 관심 대상 변수가 포함되는지를 확인하였다. Shap value의 시각화를 통해 특성 중요도의 결과만으로 해석할 수 없었던 한계를 극복하고, 변수의 진입/제거 과정에서 중요도 산출에 일관성이 부족하다는 점을 보완할 수 있었다. 본 연구에서 관심 대상으로 분류했던 3점 및 실책과 관련된 다수의 변수가 미국 프로농구에서의 플레이오프 진출에 영향을 미치는 주요 변수에 포함되는 것으로 나타났다. 본 연구는 기존의 스포츠 데이터 분석 분야에서 다루었던 경기 결과, 플레이오프 및 우승 예측 등의 주제를 포함하고 분석을 위해 여러 머신러닝 모델을 비교 분석했다는 점에서 유사성이 있지만, 사전에 관심 속성을 설정하고, 이를 통계적으로 검증함으로써 머신러닝 분석 결과와 비교하였다는 측면에서 차이가 있다. 또한 XAI 모델 중 하나인 SHAP를 이용하여 설명 가능한 시각화 결과를 제시함으로써 기존 연구와 차별화하였다.

지식 그래프와 딥러닝 모델 기반 텍스트와 이미지 데이터를 활용한 자동 표적 인식 방법 연구 (Automatic Target Recognition Study using Knowledge Graph and Deep Learning Models for Text and Image data)

  • 김종모;이정빈;전호철;손미애
    • 인터넷정보학회논문지
    • /
    • 제23권5호
    • /
    • pp.145-154
    • /
    • 2022
  • 자동 표적 인식(Automatic Target Recognition, ATR) 기술이 미래전투체계(Future Combat Systems, FCS)의 핵심 기술로 부상하고 있다. 그러나 정보통신(IT) 및 센싱 기술의 발전과 더불어 ATR에 관련이 있는 데이터는 휴민트(HUMINT·인적 정보) 및 시긴트(SIGINT·신호 정보)까지 확장되고 있음에도 불구하고, ATR 연구는 SAR 센서로부터 수집한 이미지, 즉 이민트(IMINT·영상 정보)에 대한 딥러닝 모델 연구가 주를 이룬다. 복잡하고 다변하는 전장 상황에서 이미지 데이터만으로는 높은 수준의 ATR의 정확성과 일반화 성능을 보장하기 어렵다. 본 논문에서는 이미지 및 텍스트 데이터를 동시에 활용할 수 있는 지식 그래프 기반의 ATR 방법을 제안한다. 지식 그래프와 딥러닝 모델 기반의 ATR 방법의 핵심은 ATR 이미지 및 텍스트를 각각의 데이터 특성에 맞게 그래프로 변환하고 이를 지식 그래프에 정렬하여 지식 그래프를 매개로 이질적인 ATR 데이터를 연결하는 것이다. ATR 이미지를 그래프로 변환하기 위해서, 사전 학습된 이미지 객체 인식 모델과 지식 그래프의 어휘를 활용하여 객체 태그를 노드로 구성된 객체-태그 그래프를 이미지로부터 생성한다. 반면, ATR 텍스트는 사전 학습된 언어 모델, TF-IDF, co-occurrence word 그래프 및 지식 그래프의 어휘를 활용하여 ATR에 중요한 핵심 어휘를 노드로 구성된 단어 그래프를 생성한다. 생성된 두 유형의 그래프는 엔터티 얼라이먼트 모델을 활용하여 지식 그래프와 연결됨으로 이미지 및 텍스트로부터의 ATR 수행을 완성한다. 제안된 방법의 우수성을 입증하기 위해 웹 문서로부터 227개의 문서와 dbpedia로부터 61,714개의 RDF 트리플을 수집하였고, 엔터티 얼라이먼트(혹은 정렬)의 accuracy, recall, 및 f1-score에 대한 비교실험을 수행하였다.