• Title/Summary/Keyword: Web data mining

Search Result 412, Processing Time 0.025 seconds

A Web-Based Domain Ontology Construction Modelling and Application in the Wetland Domain

  • Xing, Jun;Han, Min
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.6
    • /
    • pp.754-759
    • /
    • 2007
  • Methodology of ontology building based on Web resources will not only reduce significantly the ontology construction period, but also enhance the quality of the ontology. Remarkable progress has been achieved in this regard, but they encounter similar difficulties, such as the Web data extraction and knowledge acquisition. This paper researches on the characteristics of ontology construction data, including dynamics, largeness, variation and openness and other features, and the fundamental issue of ontology construction - formalized representation method. Then, the key technologies used in and the difficulties with ontology construction are summarized. A software Model-OntoMaker (Ontology Maker) is designed. The model is innovative in two regards: (1) the improvement of generality: the meta learning machine will dynamically pick appropriate ontology learning methodologies for data of different domains, thus optimizing the results; (2) the merged processing of (semi-) structural and non-structural data. In addition, as known to all wetland researchers, information sharing is vital to wetland exploitation and protection, while wetland ontology construction is the basic task for information sharing. OntoMaker constructs the wetland ontologies, and the model in this work can also be referred to other environmental domains.

  • PDF

Biotea-2-Bioschemas, facilitating structured markup for semantically annotated scholarly publications

  • Garcia, Leyla;Giraldo, Olga;Garcia, Alexander;Rebholz-Schuhmann, Dietrich
    • Genomics & Informatics
    • /
    • v.17 no.2
    • /
    • pp.14.1-14.6
    • /
    • 2019
  • The total number of scholarly publications grows day by day, making it necessary to explore and use simple yet effective ways to expose their metadata. Schema.org supports adding structured metadata to web pages via markup, making it easier for data providers but also for search engines to provide the right search results. Bioschemas is based on the standards of schema.org, providing new types, properties and guidelines for metadata, i.e., providing metadata profiles tailored to the Life Sciences domain. Here we present our proposed contribution to Bioschemas (from the project "Biotea"), which supports metadata contributions for scholarly publications via profiles and web components. Biotea comprises a semantic model to represent publications together with annotated elements recognized from the scientific text; our Biotea model has been mapped to schema.org following Bioschemas standards.

An Web Caching Method based on the Object Reference Probability Distribution Characteristics and the Life Time of Web Object (웹 객체의 참조확률분포특성과 평균수명 기반의 웹 캐싱 기법)

  • Na, Yun-Ji;Ko, Il-Seok
    • Convergence Security Journal
    • /
    • v.6 no.4
    • /
    • pp.91-99
    • /
    • 2006
  • Generally, a study of web caching is conducted on a performance improvement with structural approaches and a new hybrid method using existing methods, and studies on caching method itself. And existing analysis of reference-characteristic are conducted on a history analysis and a preference of users, a view point of data mining by log analysis. In this study, we analyze the reference-characteristic of web object on a view point of a characteristic of probability-distribution and a mean value of lifetime of a web-object. And using this result, we propose the new method for a performance improvement of a web-caching.

  • PDF

Finding Weighted Sequential Patterns over Data Streams via a Gap-based Weighting Approach (발생 간격 기반 가중치 부여 기법을 활용한 데이터 스트림에서 가중치 순차패턴 탐색)

  • Chang, Joong-Hyuk
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.55-75
    • /
    • 2010
  • Sequential pattern mining aims to discover interesting sequential patterns in a sequence database, and it is one of the essential data mining tasks widely used in various application fields such as Web access pattern analysis, customer purchase pattern analysis, and DNA sequence analysis. In general sequential pattern mining, only the generation order of data element in a sequence is considered, so that it can easily find simple sequential patterns, but has a limit to find more interesting sequential patterns being widely used in real world applications. One of the essential research topics to compensate the limit is a topic of weighted sequential pattern mining. In weighted sequential pattern mining, not only the generation order of data element but also its weight is considered to get more interesting sequential patterns. In recent, data has been increasingly taking the form of continuous data streams rather than finite stored data sets in various application fields, the database research community has begun focusing its attention on processing over data streams. The data stream is a massive unbounded sequence of data elements continuously generated at a rapid rate. In data stream processing, each data element should be examined at most once to analyze the data stream, and the memory usage for data stream analysis should be restricted finitely although new data elements are continuously generated in a data stream. Moreover, newly generated data elements should be processed as fast as possible to produce the up-to-date analysis result of a data stream, so that it can be instantly utilized upon request. To satisfy these requirements, data stream processing sacrifices the correctness of its analysis result by allowing some error. Considering the changes in the form of data generated in real world application fields, many researches have been actively performed to find various kinds of knowledge embedded in data streams. They mainly focus on efficient mining of frequent itemsets and sequential patterns over data streams, which have been proven to be useful in conventional data mining for a finite data set. In addition, mining algorithms have also been proposed to efficiently reflect the changes of data streams over time into their mining results. However, they have been targeting on finding naively interesting patterns such as frequent patterns and simple sequential patterns, which are found intuitively, taking no interest in mining novel interesting patterns that express the characteristics of target data streams better. Therefore, it can be a valuable research topic in the field of mining data streams to define novel interesting patterns and develop a mining method finding the novel patterns, which will be effectively used to analyze recent data streams. This paper proposes a gap-based weighting approach for a sequential pattern and amining method of weighted sequential patterns over sequence data streams via the weighting approach. A gap-based weight of a sequential pattern can be computed from the gaps of data elements in the sequential pattern without any pre-defined weight information. That is, in the approach, the gaps of data elements in each sequential pattern as well as their generation orders are used to get the weight of the sequential pattern, therefore it can help to get more interesting and useful sequential patterns. Recently most of computer application fields generate data as a form of data streams rather than a finite data set. Considering the change of data, the proposed method is mainly focus on sequence data streams.

An Efficient Algorithm for Mining Interactive Communication Sequence Patterns (대화형 통신 순서열 패턴의 마이닝을 위한 효율적인 알고리즘)

  • Haam, Deok-Min;Song, Ji-Hwan;Kim, Myoung-Ho
    • Journal of KIISE:Databases
    • /
    • v.36 no.3
    • /
    • pp.169-179
    • /
    • 2009
  • Communication log data consist of communication events such as sending and receiving e-mail or instance message and visiting web sites, etc. Many countries including USA and EU enforce the retention of these data on the communication service providers for the purpose of investigating or detecting criminals through the Internet. Because size of the retained data is very large, the efficient method for extracting valuable information from the data is needed for Law Enforcement Authorities to use the retained data. This paper defines the Interactive Communication Sequence Patterns(ICSPs) that is the important information when each communication event in communication log data consists of sender, receiver, and timestamp of this event. We also define a Mining(FDICSP) problem to discover such patterns and propose a method called Fast Discovering Interactive Communication Sequence Pattern(FDICSP) to solve this problem. FDICSP focuses on the characteristics of ICS to reduce the search space when it finds longer sequences by using shorter sequences. Thus, FDICSP can find Interactive Communication Sequence Patterns efficiently.

Identifying Research Trends in Big data-driven Digital Transformation Using Text Mining (텍스트마이닝을 활용한 빅데이터 기반의 디지털 트랜스포메이션 연구동향 파악)

  • Minjun, Kim
    • Smart Media Journal
    • /
    • v.11 no.10
    • /
    • pp.54-64
    • /
    • 2022
  • A big data-driven digital transformation is defined as a process that aims to innovate companies by triggering significant changes to their capabilities and designs through the use of big data and various technologies. For a successful big data-driven digital transformation, reviewing related literature, which enhances the understanding of research statuses and the identification of key research topics and relationships among key topics, is necessary. However, understanding and describing literature is challenging, considering its volume and variety. Establishing a common ground for central concepts is essential for science. To clarify key research topics on the big data-driven digital transformation, we carry out a comprehensive literature review by performing text mining of 439 articles. Text mining is applied to learn and identify specific topics, and the suggested key references are manually reviewed to develop a state-of-the-art overview. A total of 10 key research topics and relationships among the topics are identified. This study contributes to clarifying a systematized view of dispersed studies on big data-driven digital transformation across multiple disciplines and encourages further academic discussions and industrial transformation.

An Efficient Web Search Method Based on a Style-based Keyword Extraction and a Keyword Mining Profile (스타일 기반 키워드 추출 및 키워드 마이닝 프로파일 기반 웹 검색 방법)

  • Joo, Kil-Hong;Lee, Jun-Hwl;Lee, Won-Suk
    • The KIPS Transactions:PartD
    • /
    • v.11D no.5
    • /
    • pp.1049-1062
    • /
    • 2004
  • With the popularization of a World Wide Web (WWW), the quantity of web information has been increased. Therefore, an efficient searching system is needed to offer the exact result of diverse Information to user. Due to this reason, it is important to extract and analysis of user requirements in the distributed information environment. The conventional searching method used the only keyword for the web searching. However, the searching method proposed in this paper adds the context information of keyword for the effective searching. In addition, this searching method extracts keywords by the new keyword extraction method proposed in this paper and it executes the web searching based on a keyword mining profile generated by the extracted keywords. Unlike the conventional searching method which searched for information by a representative word, this searching method proposed in this paper is much more efficient and exact. This is because this searching method proposed in this paper is searched by the example based query included content information as well as a representative word. Moreover, this searching method makes a domain keyword list in order to perform search quietly. The domain keyword is a representative word of a special domain. The performance of the proposed algorithm is analyzed by a series of experiments to identify its various characteristic.

The Evaluation for Web Mining and Analytics Service from the View of Personal Information Protection and Privacy (개인정보보호 관점에서의 웹 트래픽 수집 및 분석 서비스에 대한 타당성 연구)

  • Kang, Daniel;Shim, Mi-Na;Bang, Je-Wan;Lee, Sang-Jin;Lim, Jong-In
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.6
    • /
    • pp.121-134
    • /
    • 2009
  • Consumer-centric marketing business is surely one of the most successful emerging business but it poses a threat to personal privacy. Between the service provider and the user there are many contrary issues to each other. The enterprise asserts that to abuse the privacy data which is anonymous there is not a problem. The individual only will not be able to willingly submit the problem which is latent. Web traffic analysis technology itself doesn't create issues, but this technology when used on data of personal nature might cause concerns. The most criticized ethical issue involving web traffic analysis is the invasion of privacy. So we need to inspect how many and what kind of personal informations being used and if there is any illegal treatment of personal information. In this paper, we inspect the operation of consumer-centric marketing tools such as web log analysis solutions and data gathering services with web browser toolbar. Also we inspect Microsoft explorer-based toolbar application which records and analyzes personal web browsing pattern through reverse engineering technology. Finally, this identified and explored security and privacy requirement issues to develop more reliable solutions. This study is very important for the balanced development with personal privacy protection and web traffic analysis industry.

Online Social Media Review Mining for Living Items with Probabilistic Approach: A Case Study

  • Li, Shuai;Hao, Fei;Kim, Hee-Cheol
    • Smart Media Journal
    • /
    • v.2 no.2
    • /
    • pp.20-27
    • /
    • 2013
  • The concept of social media is top of the agenda for many business executives and decision makers, as well as consultants try to identify ways where companies can make profitable use of applications such as Netflix, Flixster. The social media is playing an increasingly important role as the information sources for customers making product choices etc. With the flourish of Web 2.0 technology, customer reviews are becoming more and more useful and important information resources for people to save their time and energy on purchasing products that they want. This paper proposes the Bayesian Probabilistic Classification algorithm to mine the social media review, and evaluates it by different splits and cross validation mechanism from the real data set. The explored study experimental results show the robustness and effectiveness of proposed approach for mining the social media review.

  • PDF

Text Mining and Visualization of Papers Reviews Using R Language

  • Li, Jiapei;Shin, Seong Yoon;Lee, Hyun Chang
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.3
    • /
    • pp.170-174
    • /
    • 2017
  • Nowadays, people share and discuss scientific papers on social media such as the Web 2.0, big data, online forums, blogs, Twitter, Facebook and scholar community, etc. In addition to a variety of metrics such as numbers of citation, download, recommendation, etc., paper review text is also one of the effective resources for the study of scientific impact. The social media tools improve the research process: recording a series online scholarly behaviors. This paper aims to research the huge amount of paper reviews which have generated in the social media platforms to explore the implicit information about research papers. We implemented and shown the result of text mining on review texts using R language. And we found that Zika virus was the research hotspot and association research methods were widely used in 2016. We also mined the news review about one paper and derived the public opinion.