• Title/Summary/Keyword: Web Recommendation

Search Result 314, Processing Time 0.024 seconds

A Collaborative Recommendation Method based on Fuzzy Associative Memory (퍼지연상기억장치에 기반한 협력 추천 방법)

  • 이동섭;고일주;김계영
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.8
    • /
    • pp.1054-1061
    • /
    • 2004
  • At recent, people can easily access to information by Internet to be rapidly evolving. And also, the amount is rapidly increasing. So the techniques, to automatically extract the required information are very important to reduce the time and the effort for retrieving information. In this paper, we describe a collaborative filtering system for automatically recommending high-quality information to users with similar interests on arbitrarily narrow information domains. It asks a user to rate a gauge set of items. It then evaluates the user's rates and suggests a recommendation set of items. We interpret the process of evaluation as an inference mechanism that maps a gauge set to a recommendation set. We accomplish the mapping with FAM (Fuzzy Associative Memory). We implemented the suggested system in a Web server and tested its performance in the domain of retrieval of technical papers, especially in the field of information technologies. The experimental results show that it may provide reliable recommendations.

Classification and Recommendation of Scene Templates for PR Video Making Service based on Strategic Meta Information (홍보동영상 제작 서비스를 위한 전략메타정보 기반 장면템플릿 분류 및 추천)

  • Park, Jongbin;Lee, Han-Duck;Kim, Kyung-Won;Jung, Jong-Jin;Lim, Tae-Beom
    • Journal of Broadcast Engineering
    • /
    • v.20 no.6
    • /
    • pp.848-861
    • /
    • 2015
  • In this paper, we introduce a new web-based PR video making service system. Many video editing tools have required tough editing skill or scenario planning stage for a just simple PR video making. Some users may prefer a simple and fast way than sophisticated and complex functionality. To solve this problem, it is important to provide easy user interface and intelligent classification and recommendation scheme. Therefore, we propose a new template classification and recommendation scheme using a topic modeling method. The proposed scheme has the big advantage of being able to handle the unstructured meta data as well as structured one.

The Academic Information Analysis Service using OntoFrame - Recommendation of Reviewers and Analysis of Researchers' Accomplishments - (OntoFrame 기반 학술정보 분석 서비스 - 심사자 추천과 연구성과 분석 -)

  • Kim, Pyung;Lee, Seung-Woo;Kang, In-Su;Jung, Han-Min;Lee, Jung-Yeoun;Sung, Won-Kyung
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.7
    • /
    • pp.431-441
    • /
    • 2008
  • The academic information analysis service is including automatic recommendation of reviewers and analysis of researchers' accomplishments. The service of recommendation of reviewers should be processed in a transparent, fair and accountable way. When selecting reviewers, the following information must be considered: subject of project, reviewer's maj or, expertness of reviewer, relationship between applicant and reviewer. The analysis service of researchers' accomplishments is providing statistic information of researcher, institution and location based on accomplishments including book, article, patent, report and work of art. In order to support these services, we designed ontology for academic information, converted legacy data to RDF triples, expanded knowledge appropriate to services using OntoFrame. OntoFrame is service framework which includes ontology, reasoning engine, triple store. In our study, we propose the design methodology of ontology and service system for academic information based on OntoFrame. And then we explain the components of service system, processing steps of automatic recommendation of reviewers and analysis of researchers' accomplishments.

Personalized Dietary Nutrition Contents Recommendation using Hybrid Filtering for Managing Health (건강관리를 위한 혼합 필터링을 이용한 개인화 식이영양 콘텐츠 추천)

  • Chung, Kyung-Yong;Lee, Young-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.11
    • /
    • pp.1-9
    • /
    • 2011
  • With the development of next IT convergence technology and the construction of infrastructure for personalized healthcare services, the importance of services based on user's preference is being spotlighted. Healthcare service have been progressed as treatment and management for specific diseases and dietary nutrition managements to customers according to the increase in chronic patients. In this paper, we proposed the personalized dietary nutrition contents recommendation using the hybrid filtering for managing health. The proposed method uses the hybrid filtering through combining the collaborative filtering and the image filtering in order to reinforce the special trend that recommendation provides similar contents. We developed the Web application for this purpose, and experimented with it to verify the logical validity and effectiveness. Accordingly, the satisfaction and the quality of services will be improved the healthcare by recommending the dietary nutrition contents. This evaluation found that the difference of satisfaction by service was statistically meaningful and showed high satisfaction.

A Customer Profile Model for Collaborative Recommendation in e-Commerce (전자상거래에서의 협업 추천을 위한 고객 프로필 모델)

  • Lee, Seok-Kee;Jo, Hyeon;Chun, Sung-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.67-74
    • /
    • 2011
  • Collaborative recommendation is one of the most widely used methods of automated product recommendation in e-Commerce. For analyzing the customer's preference, traditional explicit ratings are less desirable than implicit ratings because it may impose an additional burden to the customers of e-commerce companies which deals with a number of products. Cardinal scales generally used for representing the preference intensity also ineffective owing to its increasing estimation errors. In this paper, we propose a new way of constructing the ordinal scale-based customer profile for collaborative recommendation. A Web usage mining technique and lexicographic consensus are employed. An experiment shows that the proposed method performs better than existing CF methodologies.

Context-aware Protype for Adaptive Recommendation Service on Mobile (모바일 환경에서 능동적 추천 서비스를 위한 상황인식 프로토타입)

  • Chang, Hyo-Kyung;Kang, Yong-Ho;Choi, Eui-In
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.257-264
    • /
    • 2012
  • The development of mobile devices and the spread of wireless network help share and exchange information and resources more easily. The bond them to Cloud Computing technology help pay attention to "Mobile Cloud" service, so there have been being a lot of studies on "Mobile Cloud" service. Especially, the important of 'Recommendation Service' which is customized for each user's preference and context has been increasing. In order to provide appropriate recommendation services, it enables to recognize user's current state, analyze the user's profile like user's tendency and preference, and draw the service answering the user's request. Most existing frameworks, however, are not very suitable for mobile devices because they were proposed on the web-based. And other context information except location information among user's context information are not much considered. Therefore, this paper proposed the context-aware framework, which provides more suitable services by using user's context and profile.

Personalized Recommendation System using Level of Cosine Similarity of Emotion Word from Social Network (소셜 네트워크에서 감정단어의 단계별 코사인 유사도 기법을 이용한 추천시스템)

  • Kwon, Eungju;Kim, Jongwoo;Heo, Nojeong;Kang, Sanggil
    • Journal of Information Technology and Architecture
    • /
    • v.9 no.3
    • /
    • pp.333-344
    • /
    • 2012
  • This paper proposes a system which recommends movies using information from social network services containing personal interest and taste. Method for establishing data is as follows. The system gathers movies' information from web sites and user's information from social network services such as Facebook and twitter. The data from social network services is categorized into six steps of emotion level for more accurate processing following users' emotional states. Gathered data will be established into vector space model which is ideal for analyzing and deducing the information with the system which is suggested in this paper. The existing similarity measurement method for movie recommendation is presentation of vector information about emotion level and similarity measuring method on the coordinates using Cosine measure. The deducing method suggested in this paper is two-phase arithmetic operation as follows. First, using general cosine measurement, the system establishes movies list. Second, using similarity measurement, system decides recommendable movie list by vector operation from the coordinates. After Comparative Experimental Study on the previous recommendation systems and new one, it turned out the new system from this study is more helpful than existing systems.

XPOS: XPath-based OWL Storage Model for Effective Query Processing (XPOS: 효율적인 질의 처리를 위한 XPath 기반의 OWL 저장 모델)

  • Kim, Jin-Hyung;Jeong, Dong-Won;Baik, Doo-Kwon
    • Journal of KIISE:Databases
    • /
    • v.35 no.3
    • /
    • pp.243-256
    • /
    • 2008
  • With rapid growth of Internet, the amount of information in the Web is increasing exponentially. However, information on the current Web is understandable only for human, and thus it makes the exact information retrieval difficult. For solving this problem, the Semantic Web is suggested and we must use ontology languages that can endow data to semantics for implementing it. One of the representative ontology languages is OWL(Web Ontology Language) adopted as a recommendation by the World-Wide Web Consortium. OWL has richer expression power and formal semantics than other ontology languages such as RDF and RDF-S. In addition, OWL includes hierarchical structure information between classes or properties. Therefore, an efficient OWL storage model considering hierarchical structure for effective information retrieval on the Semantic Web is required. In this paper, we suggest the XPOS(XPath-based OWL Storage) model including hierarchy information between classes or properties as XPath form and enabling intuitive and effective information retrieval. Also, we show the comparative evaluation results on the performance of XPOS model, Sesame, and the XML storage-based storage model regarding query processing.

An Ontology-based Recommendation Agent for Personalized Web Navigation (개인화 된 웹 네비게이션을 위한 온톨로지 기반 추천 에이전트)

  • 정현섭;양재영;최중민
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.1_2
    • /
    • pp.40-50
    • /
    • 2003
  • Ontology is the artifacts for representing the truth or the states of objects by defining objects and their relations. In this paper, we propose an agent that classifies Web documents and provides personalized information towards user`s information needs using ontology. the agent uses ontology in which semantic relations on Web documents are represented in ta hierarchical form to classify Web documents. In this paper, ontology consists of concepts, features(describing concepts), relations(among concepts) and constraints(among elements in a feature). The agent can capture user's information needs efficiently by using ontology and assist Web navigation by using users profiles and the results of identification of semantic relations in Web documents. Also, the agent obtains Web documents by a look-ahead search and represents them as concepts, therefore users can understand them easily by receiving recommendations expressed in the form of high-level concepts.

Web Page Recommendation Using User Profile (사용자 프로파일을 이용한 웹페이지 추천)

  • 강귀영;조동섭
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.433-435
    • /
    • 2001
  • 전자상거래 사이트 내에서 제공되는 정보가 많아질수록 사용자는 많은 실패를 거친 후 자신이 원하는 정보에 도달하게 된다. 사용자가 어떤 사이트에 자주 찾아오도록 하기 위해서는 적은 노력으로도 원하는 정보에 도달할 수 있도록 도움을 주는 웹 페이지추천 기법이 필요하다. 이 기법은 사용자 프로파일의 패턴을 분석한 후 분석된 결과를 바탕으로 사용자에게 현재 있는 페이지와 가장 연관성이 높다고 판단되는 웹 페이지를 연관규칙을 응용한 방법을 이용하여 추천한다.

  • PDF