• 제목/요약/키워드: Web Document Analysis

검색결과 139건 처리시간 0.022초

35-Year Research History of Cytotoxicity and Cancer: a Quantitative and Qualitative Analysis

  • Farghadani, Reyhaneh;Haerian, Batoul Sadat;Ebrahim, Nader Ale;Muniandy, Sekaran
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권7호
    • /
    • pp.3139-3145
    • /
    • 2016
  • Cancer is the leading cause of morbidity and mortality worldwide, characterized by irregular cell growth. Cytotoxicity or killing tumor cells that divide rapidly is the basic function of chemotherapeutic drugs. However, these agents can damage normal dividing cells, leading to adverse effects in the body. In view of great advances in cancer therapy, which are increasingly reported each year, we quantitatively and qualitatively evaluated the papers published between 1981 and December 2015, with a closer look at the highly cited papers (HCPs), for a better understanding of literature related to cytotoxicity in cancer therapy. Online documents in the Web of Science (WOS) database were analyzed based on the publication year, the number of times they were cited, research area, source, language, document type, countries, organization-enhanced and funding agencies. A total of 3,473 publications relevant to the target key words were found in the WOS database over 35 years and 86% of them (n=2,993) were published between 2000-2015. These papers had been cited 54,330 times without self-citation from 1981 to 2015. Of the 3,473 publications, 17 (3,557citations) were the most frequently cited ones between 2005 and 2015. The topmost HCP was about generating a comprehensive preclinical database (CCLE) with 825 (23.2%) citations. One third of the remaining HCPs had focused on drug discovery through improving conventional therapeutic agents such as metformin and ginseng. Another 33% of the HCPs concerned engineered nanoparticles (NPs) such as polyamidoamine (PAMAM) dendritic polymers, PTX/SPIO-loaded PLGAs and cell-derived NPs to increase drug effectiveness and decrease drug toxicity in cancer therapy. The remaining HCPs reported novel factors such as miR-205, Nrf2 and p27 suggesting their interference with development of cancer in targeted cancer therapy. In conclusion, analysis of 35-year publications and HCPs on cytotoxicity in cancer in the present report provides opportunities for a better understanding the extent of topics published and may help future research in this area.

내장형 소프트웨어 마르코프 체인 모델과 단위 테스트를 이용한 내장형 소프트웨어 신뢰도 분석 도구의 설계와 구현 (A Design and Implementation of Reliability Analyzer for Embedded Software using Markov Chain Model and Unit Testing)

  • 곽동규;유재우;최재영
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권12호
    • /
    • pp.1-10
    • /
    • 2011
  • 내장형 시스템의요구사항이 복잡해짐에 따라 내장형 소프트웨어의 신뢰도를분석하기 위한 도구가 요구되고있다. 소프트웨어의 신뢰도를 분석하는 방법으로는 확률적 모델링을 이용하는데, 다수의 디바이스를 제어하는 내장형 소프트웨어에 적용하기 위해서는 내장형 소프트웨어에 특성화 시킬 필요가 있다. 또한, 기존의 신뢰도 분석 도구는 각 상태간의 전이 확률을 다른 방법으로 측정해야 하고, 한 번 작성한 모델에 대해 재사용을 고려하고 있지 않는다. 본 논문은 내장형 소프트웨어의 신뢰도를 분석하기 위해 내장형 소프트웨어 마르코프 체인 모델과 단위 테스팅 도구를 이용한 신뢰도 분석 도구를 제안한다. 내장형 소프트웨어 마르코프 체인 모델은 신뢰도 분석 방법으로 많이 사용되고 있는 마르코프 체인 모델을 내장형 소프트웨어에 특성화 시킨 모델이다. 그리고 단위 테스팅 도구는 내장형 소프트웨어의 개발환경에 적합한 호스트/타겟 구조를 가지고 있다. 제안하는 도구는 신뢰도 분석을 위해 단위간 전이 확률을 단위 테스트 결과로부터 자동으로 측정하여 기존의 도구보다 용이하게 신뢰도를 분석할 수 있다. 그리고 소프트웨어 모델을 XML 기반의 문서로 표현하여 단위 테스팅 도구가 업데이트 시킨 테스트 결과를 바로 적용할수 있고, 웹 기반의 인터페이스와 SVN 저장소를 이용하여 다수의 개발자가 쉽게 접근할 수 있는 장점을 갖는다. 본 논문에서는 예제를 이용하여 신뢰도의 분석을 보이고 신뢰도 측정에 유용함을 보인다.

나이브 베이즈 기반 소셜 미디어 상의 신조어 감성 판별 기법 (Sensitivity Identification Method for New Words of Social Media based on Naive Bayes Classification)

  • 김정인;박상진;김형주;최준호;김한일;김판구
    • 스마트미디어저널
    • /
    • 제9권1호
    • /
    • pp.51-59
    • /
    • 2020
  • 인터넷의 발달과 스마트폰의 보급으로 인하여 그에 따른 소셜 미디어 문화가 형성됨에 따라 PC통신부터 지금까지 소셜 미디어 신조어가 그 문화로 자리 잡아가고 있다. 소셜 미디어의 등장과 사람들의 가교역할을 해주는 스마트폰의 보급화로 신조어가 생기고 빈번하게 사용되고 있는 추세이다. 신조어의 사용은 다양한 문자 제한 메신저의 문제점을 해결하고 짧은 문장을 사용하여 데이터를 줄이는 등 많은 장점을 가지고 있다. 그러나 신조어에는 사전적인 의미가 없으므로 데이터 마이닝 기술이나 빅데이터와 같은 연구에서 사용되는 알고리즘의 성능 저하와 연구에 제약사항이 발생한다. 따라서 본 논문에서는 웹 크롤링을 통해 텍스트 데이터를 추출하고, 텍스트 마이닝과 오피니언 마이닝을 통해 의미부여 및 단어들에 대한 감정적 분류를 통한 문장의 오피니언 파악을 진행하고자 한다. 실험은 다음과 같이 3단계로 진행하였다. 첫째, 소셜 미디어에서 새로운 단어를 수집하여 수집된 단어는 긍정적이고 부정적인 학습을 받게 하였다. 둘째, 표준 문서를 사용하여 감정적 가치를 도출하고 검증하기 위해 TF-IDF를 사용하여 데이터의 감정적 가치를 측정하기 위해 명사 빈도수를 측정한다. 신조어와 마찬가지로 분류된 감정적 가치가 적용되어 감정이 표준 언어 문서로 분류되는지 확인하였다. 마지막으로, 새로 합성된 단어와 표준 감정적 가치의 조합을 사용하여 장비 기술의 비교분석을 수행하였다.

주가지수 방향성 예측을 위한 주제지향 감성사전 구축 방안 (Predicting the Direction of the Stock Index by Using a Domain-Specific Sentiment Dictionary)

  • 유은지;김유신;김남규;정승렬
    • 지능정보연구
    • /
    • 제19권1호
    • /
    • pp.95-110
    • /
    • 2013
  • 최근 다양한 소셜미디어를 통해 생성되는 비정형 데이터의 양은 빠른 속도로 증가하고 있으며, 이를 저장, 가공, 분석하기 위한 도구의 개발도 이에 맞추어 활발하게 이루어지고 있다. 이러한 환경에서 다양한 분석도구를 통해 텍스트 데이터를 분석함으로써, 기존의 정형 데이터 분석을 통해 해결하지 못했던 이슈들을 해결하기 위한 많은 시도가 이루어지고 있다. 특히 트위터나 페이스북을 통해 실시간에 근접하게 생산되는 글들과 수많은 인터넷 사이트에 게시되는 다양한 주제의 글들은, 방대한 양의 텍스트 분석을 통해 많은 사람들의 의견을 추출하고 이를 통해 향후 수익 창출에 기여할 수 있는 새로운 통찰을 발굴하기 위한 움직임에 동기를 부여하고 있다. 뉴스 데이터에 대한 오피니언 마이닝을 통해 주가지수 등락 예측 모델을 제안한 최근의 연구는 이러한 시도의 대표적 예라고 할 수 있다. 우리가 여러 매체를 통해 매일 접하는 뉴스 역시 대표적인 비정형 데이터 중의 하나이다. 이러한 비정형 텍스트 데이터를 분석하는 오피니언 마이닝 또는 감성 분석은 제품, 서비스, 조직, 이슈, 그리고 이들의 여러 속성에 대한 사람들의 의견, 감성, 평가, 태도, 감정 등을 분석하는 일련의 과정을 의미한다. 이러한 오피니언 마이닝을 다루는 많은 연구는, 각 어휘별로 긍정/부정의 극성을 규정해 놓은 감성사전을 사용하며, 한 문장 또는 문서에 나타난 어휘들의 극성 분포에 따라 해당 문장 또는 문서의 극성을 산출하는 방식을 채택한다. 하지만 특정 어휘의 극성은 한 가지로 고유하게 정해져 있지 않으며, 분석의 목적에 따라 그 극성이 상이하게 나타날 수도 있다. 본 연구는 특정 어휘의 극성은 한 가지로 고유하게 정해져 있지 않으며, 분석의 목적에 따라 그 극성이 상이하게 나타날 수도 있다는 인식에서 출발한다. 동일한 어휘의 극성이 해석하는 사람의 입장에 따라 또는 분석 목적에 따라 서로 상이하게 해석되는 현상은 지금까지 다루어지지 않은 어려운 이슈로 알려져 있다. 구체적으로는 주가지수의 상승이라는 한정된 주제에 대해 각 관련 어휘가 갖는 극성을 판별하여 주가지수 상승 예측을 위한 감성사전을 구축하고, 이를 기반으로 한 뉴스 분석을 통해 주가지수의 상승을 예측한 결과를 보이고자 한다.

지자체 사이버 공간 안전을 위한 금융사기 탐지 텍스트 마이닝 방법 (Financial Fraud Detection using Text Mining Analysis against Municipal Cybercriminality)

  • 최석재;이중원;권오병
    • 지능정보연구
    • /
    • 제23권3호
    • /
    • pp.119-138
    • /
    • 2017
  • 최근 SNS는 개인의 의사소통뿐 아니라 마케팅의 중요한 채널로도 자리매김하고 있다. 그러나 사이버 범죄 역시 정보와 통신 기술의 발달에 따라 진화하여 불법 광고가 SNS에 다량으로 배포되고 있다. 그 결과 개인정보를 빼앗기거나 금전적인 손해가 빈번하게 일어난다. 본 연구에서는 SNS로 전달되는 홍보글인 비정형 데이터를 분석하여 어떤 글이 금융사기(예: 불법 대부업 및 불법 방문판매)와 관련된 글인지를 분석하는 방법론을 제안하였다. 불법 홍보글 학습 데이터를 만드는 과정과, 데이터의 특성을 고려하여 입력 데이터를 구성하는 방안, 그리고 판별 알고리즘의 선택과 추출할 정보 대상의 선정 등이 프레임워크의 주요 구성 요소이다. 본 연구의 방법은 실제로 모 지방자치단체의 금융사기 방지 프로그램의 파일럿 테스트에 활용되었으며, 실제 데이터를 가지고 분석한 결과 금융사기 글을 판정하는 정확도가 사람들에 의하여 판정하는 것이나 키워드 추출법(Term Frequency), MLE 등에 비하여 월등함을 검증하였다.

추천시스템관련 학술논문 분석 및 분류 (A Literature Review and Classification of Recommender Systems on Academic Journals)

  • 박득희;김혜경;최일영;김재경
    • 지능정보연구
    • /
    • 제17권1호
    • /
    • pp.139-152
    • /
    • 2011
  • 1990년대 중반에 협업 필터링의 출현으로 인하여 추천시스템에 관련된 연구가 늘어나게 되었다. 협업 필터링의 출현 이후 내용 기반 필터링, 협업 필터링과 내용 기반 필터링이 혼합된 하이브리드 필터링 등 새로운 기법들이 출현함으로써 2000년대에는 추천시스템의 연구가 눈에 띄게 증가하였다. 하지만 현재까지 추천시스템에 관련된 문헌들에 대한 리뷰와 분류가 체계적으로 되어있지 않다. 이와 같은 문제에 대한 해결방안으로써, 본 연구에서는 2001년부터 2010년도까지의 추천시스템에 관련된 문헌들 중 MIS Journal Ranking의 125개의 저널에서 추천시스템(Recommender system, Recommendation system), 협업 필터링(Collaborative Filtering), 내용 기반 필터링(Content based Filtering), 개인화 시스템(Personalized system) 등의 5가지 키워드로 제한하여 조사하였다. 총 37개의 저널에서 논문을 검색하였으며, 검색되어진 논문을 분석한 결과 추천시스템과 관련이 없는 논문을 제외한 총 187개의 논문을 선정하여 분석하였다. 이 연구에서는 그러나 컨퍼런스 논문, 석사, 박사학위 논문, 영어로 작성되지 않은 논문, 완성되지 않은 논문 등은 제외하였다. 본 연구에서는 187개의 논문을 분석하여 2001년부터 2010년까지의 각각의 년도 별 추천시스템의 연구에 대한 동향 분석, Journal별 추천시스템의 게재 분류, 추천시스템 어플리케이션의 사용 분야(책, 문서, 이미지, 영화, 음악, 쇼핑, TV 프로그램, 기타)별 분류 및 분석, 추천시스템에 사용된 데이터마이닝 기술(연관 규칙, 군집화, 의사 결정나무, 최근접 이웃 기법, 링크 분석 기법, 신경망, 회귀분석, 휴리스틱 기법)별 분류 및 분석을 수행하였다. 따라서 본 연구에서 제안한 각각의 분류 및 분석 결과들을 통하여 현재까지 추천시스템의 연구에 대한 연구 동향을 파악 할 수 있었으며, 분석결과를 통해 추천시스템에 관심이 있는 연구자와 전문가에게 미래의 추천시스템의 연구에 대한 가이드라인을 제시 할 수 있을 것이라고 기대한다.

지역 기록화를 위한 도큐멘테이션 전략의 적용 (Directions of Implementing Documentation Strategies for Local Regions)

  • 설문원
    • 기록학연구
    • /
    • 제26호
    • /
    • pp.103-149
    • /
    • 2010
  • 자치시대에 지방의 기록관리는 지역의 고유한 특성을 반영하여 독립적으로 추진할 필요가 있다. 그러나 아직 제대로 된 지방영구기록물관리기관이 한 곳도 설립되어 있지 않은 상황에서 다각적이고 적극적인 해결책을 모색할 필요가 있는데 지방기록관리의 방향을 '시설' 중심에서 '기록'과 '전문적 관리(사람)' 중심으로 바꾸는 것이 하나의 대안이다. 특히 중앙의 기록관리 프로세스라는 보편성에 매몰되었던 개별 지역의 다양성과 역동성을 찾기 위해서는 새로운 지역 기록화 전략을 적극 탐구할 필요가 있다. 도큐멘테이션 전략은 특정 지역, 주제, 사건 등에 관한 적절한 정보를 기록 생산자, 보존 기록관, 기록 이용자의 상호 협력을 통해 선별하여 수집하는 방법론으로서 80년대에 미국을 중심으로 제안되고 다양한 분야에서 다양한 방식으로 실험되어온바 있다. 이 연구에서는 도큐멘테이션 전략이 지역 기록화를 위한 방법론으로 어떤 의미를 갖는지 살펴보고 우리의 지역 환경에 적용하기 위해서 고려해야할 점과 추진 방향을 모색해보고자 하였다. 서구에서 개발된 도큐멘테이션 전략이 현 상황에서 우리에게 주는 시사점은 다음과 같다. 첫째, 아카이브즈 및 아키비스트의 능동적 역할을 추구하며 특히 지역사회에서 기록전문직의 가치를 인식시키는 데에 기여할 수 있다. 이 전략은 지방기록관리기관들은 행정사를 넘어서 지역사를 포괄적으로 기록화 하는 주체가 될 것을 촉구한다. 이에 따라 지방의 기록전문직들은 공공기록을 수동적으로 이관 받는 데에서 그치는 것이 아니라 능동적으로 지역의 기록을 수집하고 이를 서비스하기 위해 노력해야 한다. 둘째, 지역 내 기록 수집기관들의 협력을 통해 단일 조직의 기능 재현에서 폭넓은 사회적 재현을 성취할 수 있다는 점이다. 서구에서 이러한 협력 모델은 과도한 업무 부담으로 실패한 경우가 많았지만 디지털 환경은 새로운 가능성을 보여주고 있다. 지역 내에 존재하는 다양한 기록 생산 및 소장기관들과 협력을 통해 지역의 지식역량은 물론 지역정보서비스의 수준을 높일 수 있을 것이다. 셋째, 도큐멘테이션 전략은 다양한 집단들과의 연대를 추구한다. 이 전략은 도큐멘테이션 주제와 관련된 집단이나 공동체로부터 열정과 에너지, 전문지식을 가져올 수 있는 장점을 가지며, 도큐멘테이션 전략은 기억을 남기고자 하는 주체들이 실천적 기록문화운동을 추진하는 하나의 방법론을 제공할 수 있을 것이다. 이 연구에서는 우리의 지역 현실에 적합한 기록화 방향을 다음과 같이 제안하였다. 첫째, 선택적이고 집중적인 기록화를 지향한다. 지역에 관한 모든 영역에 관한 포괄적 기록화를 추진하기 보다는 지역의 로컬리티를 가장 잘 반영하는 영역과 대상을 선정하여 기록화를 추진한다. 지역을 구성하는 다양한 요소들인 사람, 사회 문화, 조직과 제도, 건조(建造) 환경, 공간 등이 상호작용하면서 만들어지고 변화하는 실체인 로컬리티를 규명하기 위해서는 전문가 집단과 지역민의 의견을 반영하는 구조가 필요하다. 둘째, 분산 보존과 통합적 재현을 지향한다. 기록화 주관기관은 다양한 기록 소장기관들과 소장자들을 연결하는 협력체계를 구축하여 분산 소장된 기록들을 통합적으로 검색할 수 있도록 한다. 즉, 한 지역의 역사 기록을 집중 보존할 기관을 정하기보다는 연계를 통한 기록화를 추진하는 것이 현실적일 것이다. 이를 위한 도구로서 지역 게이트웨이 구축을 제안하였다. 셋째, 열린 구조의 디지털 기록화를 지향한다. 지역 기록화는 맥락 재구성을 바탕으로 기록을 수집하는 방법론을 적용하게 되므로 선별된 기록에는 이미 수집자나 맥락 해석자의 의도가 반영되어 있다. 특히 맥락 분석에 의거하여 스토리를 구성하고 이에 따라 기록을 수집하거나 연계할 경우, 자의적이고 주관적인 선별이라는 비판을 받기 쉽다. 이러한 문제를 보완하기 위해 기록 맥락의 해석과 기록화 영역의 선정 등의 과정에 지역 내 다양한 집단의 의견이 반영될 수 있도록 해야 할 것이며, 디지털 네트워크를 통해 여러 집단 및 개인의 참여가 쉽게 이루어질 수 있도록 보장해야 한다. 넷째, 지역 내 협력기관들의 영역별 기록화 수준을 정한다. 기록화에 참여하는 기관들이 디지털 기록화에 맞는 역할을 분담 받아야 하고, 각 기관은 협력적 기록화에 참여함으로써 자관 이용자들에게는 더 나은 포괄적인 기록 서비스를 제공할 수 있을 것이다. 이를 위해 도서관의 디지털 장서개발에 활용하는 컨스펙터스 모형을 응용하여 디지털 기록화 방법론을 새롭게 설계할 것을 제안하였다.

텍스트마이닝 기법을 활용한 사용후핵연료 건식처리기술 관련 언론 동향 분석 (Analysis of media trends related to spent nuclear fuel treatment technology using text mining techniques)

  • 정지송;김호동
    • 지능정보연구
    • /
    • 제27권2호
    • /
    • pp.33-54
    • /
    • 2021
  • 최근 4차 산업혁명, 코로나로 인한 뉴노멀 시대의 도래 등을 계기로 인공지능, 빅데이터 연구와 같은 언택트 관련 기술의 중요성이 더욱 급상하고 있다. 각 종 연구 분야에서는 이러한 연구 트렌드를 따라가기 위한 융합적 연구가 본격적으로 시행되고 있으나 원자력 분야의 경우 자연어 처리, 텍스트마이닝 분석 등 인공지능 및 빅데이터 관련 기술을 적용한 연구가 많이 수행되지 않았다. 이에 원자력 연구 분야에 데이터 사이언스 분석기술의 적용 가능성을 확인해보고자 본 연구를 수행하였다. 원자로 연료로 사용된 뒤 배출되는 사용후핵연료 인식 동향 파악에 대한 연구는 원자력 산업 정책에 대한 방향을 결정하고 산업정책 변화를 사전에 대응할 수 있다는 측면에서 매우 중요하다. 사용후핵연료 처리기술은 크게 습식 재처리 방식과 건식 재처리 방식으로 나뉘는데, 이 중 환경 친화적이고 핵비확산성 및 경제성이 높은 건식재처리 기술인 '파이로프로세싱'과 그 연계 원자로 '소듐냉각고속로'의 연구개발에 대한 재평가가 현재 지속적으로 검토되고 있다. 따라서 위와 같은 이유로, 본 연구에서는 사용후핵연료 처리기술인 파이로프로세싱에 대한 언론 동향 분석을 진행하였다. 사용후핵연료 처리기술인 '파이로프로세싱' 키워드를 포함하는 네이버 웹 뉴스 기사 전문의 텍스트데이터를 수집하여 기간에 따라 인식변화를 분석하였다. 2016년 발생한 경주 지진, 2017년 새 정부의 에너지 전환정책 시행된 2010년대 중반 시기를 기준으로 전, 후의 동향 분석이 시행되었고, 빈도분석을 바탕으로 한 워드 클라우드 도출, TF-IDF(Term Frequency - Inverse Document Frequency) 도출, 연결정도 중심성 산출 등의 분석방법을 통해 텍스트데이터에 대한 세부적이고 다층적인 분석을 수행하였다. 연구 결과, 2010년대 이전에는 사용후핵연료 처리기술에 대한 사회 언론의 인식이 외교적이고 긍정적이었음을 알 수 있었다. 그러나 시간이 흐름에 따라 '안전(safety)', '재검토(reexamination)', '대책(countermeasure)', '처분(disposal)', '해체(disassemble)' 등의 키워드 출현빈도가 급증하며 사용후핵연료 처리기술 연구에 대한 지속 여부가 사회적으로 진지하게 고려되고 있음을 알 수 있었다. 정치 외교적 기술로 인식되던 사용후핵연료 처리기술이 국내 정책의 변화로 연구 지속 가능성이 모호해짐에 따라 언론 인식도 점차 변화했다는 것을 확인하였다. 이러한 연구 결과를 통해 원자력 분야에서의 사회과학 연구의 지속은 필수불가결함을 알 수 있었고 이에 대한 중요성이 부각되었다. 또한, 현 정부의 원전 감축과 같은 에너지 정책의 영향으로, 사용후핵연료 처리기술 연구개발에 대한 재평가가 시행되는 이 시점에서 해당 분야의 주요 키워드 분석은 향후 연구 방향 설정에 기여할 수 있을 것이라는 측면에서 실무적 의의를 갖는다. 더 나아가 원자력 공학 분야에 사회과학 분야를 폭넓게 적용할 필요가 있으며, 국가 정책적 변화를 고려해야 원자력 산업이 지속 가능할 것으로 사료된다.

개인화된 뉴스 서비스를 위한 소셜 네트워크 기반의 콘텐츠 추천기법 (Content-based Recommendation Based on Social Network for Personalized News Services)

  • 홍명덕;오경진;가명현;조근식
    • 지능정보연구
    • /
    • 제19권3호
    • /
    • pp.57-71
    • /
    • 2013
  • 세계에는 수많은 사람들이 살아가고 있고, 사람들의 일상으로부터 매일, 매 시간 단위로 새로운 뉴스가 발생한다. 발생되는 뉴스는 예정된 일과 예상하지 못한 일들을 포함하고 있다. 발생하는 뉴스의 거대한 양과 이를 전달하는 수많은 미디어들로 인해 사람들은 뉴스 콘텐츠를 이용하는데 많은 시간을 소비하게 된다. 하지만 미디어에 시시각각 나타나는 속보와 실시간 이슈의 대부분이 가십 기사로 이루어져 있어 사용자들이 자신의 성향에 맞는 뉴스를 선별하고, 뉴스로부터 정보를 획득하는 것은 쉽지 않은 일이다. 또한 사용자의 관심사가 시간에 따라 변하기 때문에 뉴스 제공에 있어 사용자의 변하는 관심사를 반영하는 것이 요구된다. 본 논문에서는 사용자의 최근 관심사를 기반으로 사용자 선호도에 맞는 뉴스를 제공하기 위한 콘텐츠 기반의 추천 기법 및 시스템을 제안한다. 사용자의 최근 선호도를 파악하기 위하여 소셜 네트워크 서비스인 Facebook 사용자의 정보와 최근 게시글을 이용하여 동적으로 사용자 프로파일을 생성하여 이를 뉴스 서비스에 활용하고, 사용자 선호도에 적합한 뉴스를 추출하기 위해서 뉴스 콘텐츠의 분석을 요구한다. 뉴스 콘텐츠 분석을 위해 미디어에서 제공되는 뉴스의 카테고리를 사용하고, 뉴스 방송원고의 분석 및 주요 키워드 추출을 통해 뉴스 프로파일을 생성한다. 사용자 프로파일과 뉴스 프로파일 간의 유사도 측정을 위해서는 두 프로파일 간 형식의 일치화가 요구되므로 사용자 프로파일을 뉴스 프로파일과 동일한 형태로 생성한다. 사용자가 시스템에 접속하면 시스템은 사용자 프로파일에 명시된 선호도를 기반으로 뉴스 프로파일과의 유사도를 측정하고, 사용자 선호도에 가장 적합한 뉴스들을 제공하게 된다. 또한 사용자에게 제공된 뉴스 프로파일과 다른 뉴스 프로파일들 간에 유사도를 측정하여 유사도가 높은 관련된 뉴스들을 제공하게 된다. 제안한 개인화된 뉴스 서비스의 성능을 평가하기 위해 사용자에게 추천된 뉴스에 대한 사용자 평가와 시스템 예측값의 오차를 기반으로 6Sub-Vectors 벤치마크 알고리즘과 성능 평가를 수행하였고, 실험 결과를 통해 제안한 시스템의 우수성을 입증하였다.